Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,679 Bytes
a549376 3e2d9a0 7665754 3e2d9a0 8310b47 7665754 37700b8 7665754 37700b8 3e2d9a0 7665754 3e2d9a0 7665754 37700b8 8310b47 37700b8 8310b47 3e2d9a0 7665754 37700b8 7665754 37700b8 7665754 3e2d9a0 7665754 5726602 8310b47 5726602 8310b47 5726602 8310b47 5726602 8310b47 5726602 8310b47 5726602 8310b47 5726602 8310b47 5726602 8310b47 5726602 ab410e0 8310b47 3e2d9a0 7665754 3e2d9a0 7665754 ab410e0 8310b47 37700b8 3e2d9a0 145fc8a 3e2d9a0 ba4f365 3e2d9a0 7665754 3e2d9a0 7665754 37700b8 8310b47 37700b8 8310b47 37700b8 b8da832 8310b47 37700b8 76523a3 b8da832 37700b8 8310b47 bc30ca5 88eb487 8310b47 88eb487 8310b47 37700b8 7f98012 37700b8 76523a3 7f98012 c74f8b8 88eb487 c74f8b8 7f98012 c74f8b8 7f98012 c74f8b8 7f98012 c74f8b8 88eb487 7f98012 37700b8 fdbf1e2 74ae1ea fdbf1e2 74ae1ea fdbf1e2 74ae1ea fdbf1e2 74ae1ea 0e866d9 74ae1ea 2b61eb9 74ae1ea 2b61eb9 fdbf1e2 37700b8 0e866d9 37700b8 3e2d9a0 37700b8 3e2d9a0 37700b8 76523a3 37700b8 cdf9147 5726602 077c887 3e2d9a0 37700b8 3e2d9a0 37700b8 3e2d9a0 37700b8 3e2d9a0 8310b47 3e2d9a0 2b61eb9 7665754 37700b8 8310b47 3e2d9a0 37700b8 8310b47 37700b8 8310b47 6d8acb4 8310b47 7665754 37700b8 3e2d9a0 8310b47 e65cc57 8310b47 e65cc57 8310b47 e65cc57 8310b47 3e2d9a0 2b61eb9 3e2d9a0 2b61eb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import spaces
import os
import io
import torch
import gradio as gr
import requests
from diffusers import DiffusionPipeline, ZImagePipeline
# =========================================================
# CONFIG
# =========================================================
SCRIPTS_REPO_API = (
"https://api.github.com/repos/asomoza/diffusers-recipes/contents/"
"models/z-image/scripts"
)
LOCAL_SCRIPTS_DIR = "z_image_scripts"
MODEL_ID = "Tongyi-MAI/Z-Image-Turbo"
os.makedirs(LOCAL_SCRIPTS_DIR, exist_ok=True)
# =========================================================
# GLOBAL STATE (CPU SAFE)
# =========================================================
SCRIPT_CODE = {} # script_name -> code (CPU only)
PIPELINES = {} # script_name -> pipeline (GPU only, lazy)
log_buffer = io.StringIO()
# =========================================================
# LOGGING
# =========================================================
def log(msg):
print(msg)
log_buffer.write(msg + "\n")
def pipeline_technology_info(pipe):
tech = []
# Device map
if hasattr(pipe, "hf_device_map"):
tech.append("Device map: enabled")
else:
tech.append(f"Device: {pipe.device}")
# Transformer dtype
if hasattr(pipe, "transformer"):
try:
tech.append(f"Transformer dtype: {pipe.transformer.dtype}")
except Exception:
pass
# Layerwise casting (Z-Image specific)
if hasattr(pipe.transformer, "layerwise_casting"):
lw = pipe.transformer.layerwise_casting
tech.append(
f"Layerwise casting: storage={lw.storage_dtype}, compute={lw.compute_dtype}"
)
# VAE dtype
if hasattr(pipe, "vae"):
try:
tech.append(f"VAE dtype: {pipe.vae.dtype}")
except Exception:
pass
# Quantization / GGUF
if hasattr(pipe, "quantization_config"):
tech.append(f"Quantization: {pipe.quantization_config}")
# Attention backend
if hasattr(pipe, "config"):
attn = getattr(pipe.config, "attn_implementation", None)
if attn:
tech.append(f"Attention: {attn}")
return "\n".join(f"β’ {t}" for t in tech)
# =========================================================
# LATENT INFO
# =========================================================
def pipeline_debug_info(pipe):
return f"""
Pipeline Info
-------------
Device: {pipe.device}
Transformer: {pipe.transformer.__class__.__name__}
VAE: {pipe.vae.__class__.__name__}
"""
def latent_shape_info(height, width, pipe):
h = height // pipe.vae_scale_factor
w = width // pipe.vae_scale_factor
return f"Expected latent size: ({h}, {w})"
# =========================================================
# DOWNLOAD SCRIPTS (CPU ONLY)
# =========================================================
def download_scripts():
resp = requests.get(SCRIPTS_REPO_API)
resp.raise_for_status()
scripts = []
for item in resp.json():
if item["name"].endswith(".py"):
scripts.append(item["name"])
path = os.path.join(LOCAL_SCRIPTS_DIR, item["name"])
if not os.path.exists(path):
content = requests.get(item["download_url"]).text
with open(path, "w") as f:
f.write(content)
return sorted(scripts)
SCRIPT_NAMES = download_scripts()
# =========================================================
# REGISTER SCRIPTS (CPU ONLY)
# =========================================================
def register_scripts(selected_scripts):
SCRIPT_CODE.clear()
for name in selected_scripts:
path = os.path.join(LOCAL_SCRIPTS_DIR, name)
with open(path, "r") as f:
code = f.read()
SCRIPT_CODE[name] = code
# Log the .py file and extract pipe lines
log(f"=== Registering script: {name} ===")
extract_pipe_lines(code) # This logs the full script + pipe lines
return f"{len(SCRIPT_CODE)} script(s) registered β
"
# =========================================================
# EXTRACT LINES AFTER FROM_PRETRAINED
# =========================================================
def extract_pipe_lines(script_code: str):
lines = script_code.splitlines()
# Log full .py file
log("=== SCRIPT CONTENT START ===")
for l in lines:
log(l)
log("=== SCRIPT CONTENT END ===")
pipe_lines = []
found = False
for line in lines:
stripped = line.strip()
if not found and stripped.startswith("pipe = ZImagePipeline.from_pretrained"):
found = True
pipe_lines.append(line)
elif found:
# Include all subsequent lines that reference 'pipe'
if "pipe" in stripped:
pipe_lines.append(line)
# Log the extracted lines after from_pretrained
log("π§ Extracted pipe-related lines:")
for l in pipe_lines:
log(f"β’ {l.strip()}")
return pipe_lines
def extract_pipe_lines0(script_code: str):
lines = script_code.splitlines()
print(lines)
pipe_lines = []
found = False
for line in lines:
stripped = line.strip()
if not found and stripped.startswith("pipe = ZImagePipeline.from_pretrained"):
found = True
pipe_lines.append(line)
elif found:
if "pipe" in stripped:
pipe_lines.append(line)
log(f"π§ Building pipeline from {pipe_lines}")
return pipe_lines
# =========================================================
# GPU-ONLY PIPELINE BUILDER
# =========================================================
# =========================================================
# GPU-ONLY PIPELINE BUILDER (CRITICAL)
# =========================================================
def get_pipeline(script_name):
if script_name in PIPELINES:
return PIPELINES[script_name]
log(f"π§ Building pipeline from {script_name}")
namespace = {
"__file__": script_name,
"__name__": "__main__",
# Minimal required globals
"torch": torch,
}
try:
exec(SCRIPT_CODE[script_name], namespace)
except Exception as e:
log(f"β Script failed: {script_name}")
raise RuntimeError(f"Pipeline build failed for {script_name}") from e
if "pipe" not in namespace:
raise RuntimeError(
f"{script_name} did not define `pipe`.\n"
f"Each script MUST assign a variable named `pipe`."
)
PIPELINES[script_name] = namespace["pipe"]
log(f"β
Pipeline ready: {script_name}")
return PIPELINES[script_name]
def get_pipeline_fallback(script_name):
if script_name in PIPELINES:
return PIPELINES[script_name]
log(f"π§ Building pipeline from {script_name}")
namespace = {
"__file__": script_name,
"__name__": "__main__",
# Minimal required globals
"torch": torch,
}
try:
exec(SCRIPT_CODE[script_name], namespace)
except Exception as e:
log(f"β Script failed: {script_name}")
raise RuntimeError(f"Pipeline build failed for {script_name}") from e
if "pipe" not in namespace:
raise RuntimeError(
f"{script_name} did not define `pipe`.\n"
f"Each script MUST assign a variable named `pipe`."
)
PIPELINES[script_name] = namespace["pipe"]
log(f"β
Pipeline ready: {script_name}")
return PIPELINES[script_name]
# =========================================================
# IMAGE GENERATION
# =========================================================
@spaces.GPU
def generate_image(
prompt,
height,
width,
num_inference_steps,
seed,
randomize_seed,
num_images,
pipeline_name,
):
log_buffer.truncate(0)
log_buffer.seek(0)
if pipeline_name not in SCRIPT_CODE:
raise RuntimeError("Pipeline not registered")
pipe = get_pipeline(pipeline_name)
log("=== PIPELINE TECHNOLOGY ===")
log(pipeline_technology_info(pipe))
if not hasattr(pipe, "hf_device_map"):
pipe = pipe.to("cuda")
log("=== NEW GENERATION REQUEST ===")
log(f"Pipeline: {pipeline_name}")
log(f"Prompt: {prompt}")
log(f"Height: {height}, Width: {width}")
log(f"Steps: {num_inference_steps}")
log(f"Images: {num_images}")
if randomize_seed:
seed = torch.randint(0, 2**32 - 1, (1,)).item()
log(f"Random Seed β {seed}")
else:
log(f"Seed β {seed}")
num_images = min(max(1, int(num_images)), 3)
generator = torch.Generator("cuda").manual_seed(int(seed))
# Run pipeline
result = pipe(
prompt=prompt,
height=int(height),
width=int(width),
num_inference_steps=int(num_inference_steps),
guidance_scale=0.0,
generator=generator,
max_sequence_length=1024,
num_images_per_prompt=num_images,
output_type="pil",
)
try:
log(pipeline_debug_info(pipe))
log(latent_shape_info(height, width, pipe))
except Exception as e:
log(f"Diagnostics error: {e}")
log("β
Generation complete")
return result.images, seed, log_buffer.getvalue()
# =========================================================
# GRADIO UI (original layout)
# =========================================================
with gr.Blocks(title="Z-Image-Turbo Multi Image Demo") as demo:
gr.Markdown("# π¨ Z-Image-Turbo β Multi Image ")
with gr.Row():
with gr.Column(scale=1):
script_selector = gr.CheckboxGroup(
choices=SCRIPT_NAMES,
label="Select pipeline scripts"
)
register_btn = gr.Button("Register Scripts")
status = gr.Textbox(label="Status", interactive=False)
prompt = gr.Textbox(label="Prompt", lines=4)
with gr.Row():
height = gr.Slider(512, 2048, 1024, step=64, label="Height")
width = gr.Slider(512, 2048, 1024, step=64, label="Width")
num_images = gr.Slider(1, 3, 2, step=1, label="Number of Images")
num_inference_steps = gr.Slider(
1, 20, 9, step=1, label="Inference Steps",
info="9 steps = 8 DiT forward passes"
)
with gr.Row():
seed = gr.Number(label="Seed", value=42, precision=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
generate_btn = gr.Button("π Generate", variant="primary")
with gr.Column(scale=1):
pipeline_picker = gr.Dropdown(
choices=[],
label="Active Pipeline",
)
output_images = gr.Gallery( label="Generated Images", type="pil", columns=2 )
used_seed = gr.Number(label="Seed Used", interactive=False)
debug_log = gr.Textbox(
label="Debug Log Output",
lines=25,
interactive=False
)
register_btn.click(
register_scripts,
inputs=[script_selector],
outputs=[status]
)
register_btn.click(
lambda s: gr.update(choices=s, value=s[0] if s else None),
inputs=[script_selector],
outputs=[pipeline_picker]
)
generate_btn.click(
generate_image,
inputs=[prompt, height, width, num_inference_steps, seed, randomize_seed, num_images, pipeline_picker],
outputs=[output_images, used_seed, debug_log]
)
demo.queue()
demo.launch()
|