Spaces:
Running
on
Zero
Running
on
Zero
Update app_lora1.py
Browse files- app_lora1.py +74 -62
app_lora1.py
CHANGED
|
@@ -1,16 +1,15 @@
|
|
| 1 |
import spaces
|
| 2 |
import os
|
| 3 |
import io
|
| 4 |
-
import sys
|
| 5 |
import torch
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import requests
|
| 9 |
from diffusers import DiffusionPipeline
|
| 10 |
|
| 11 |
-
#
|
| 12 |
# CONFIG
|
| 13 |
-
#
|
| 14 |
SCRIPTS_REPO_API = (
|
| 15 |
"https://api.github.com/repos/asomoza/diffusers-recipes/contents/"
|
| 16 |
"models/z-image/scripts"
|
|
@@ -20,14 +19,17 @@ MODEL_ID = "Tongyi-MAI/Z-Image-Turbo"
|
|
| 20 |
|
| 21 |
os.makedirs(LOCAL_SCRIPTS_DIR, exist_ok=True)
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
log_buffer = io.StringIO()
|
| 26 |
|
| 27 |
|
| 28 |
-
#
|
| 29 |
# LOGGING
|
| 30 |
-
#
|
| 31 |
def log(msg):
|
| 32 |
print(msg)
|
| 33 |
log_buffer.write(msg + "\n")
|
|
@@ -49,9 +51,9 @@ def latent_shape_info(height, width, pipe):
|
|
| 49 |
return f"Expected latent size: ({h}, {w})"
|
| 50 |
|
| 51 |
|
| 52 |
-
#
|
| 53 |
-
# DOWNLOAD SCRIPTS
|
| 54 |
-
#
|
| 55 |
def download_scripts():
|
| 56 |
resp = requests.get(SCRIPTS_REPO_API)
|
| 57 |
resp.raise_for_status()
|
|
@@ -72,49 +74,50 @@ def download_scripts():
|
|
| 72 |
SCRIPT_NAMES = download_scripts()
|
| 73 |
|
| 74 |
|
| 75 |
-
#
|
| 76 |
-
#
|
| 77 |
-
#
|
| 78 |
-
def
|
| 79 |
-
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
| 85 |
-
log(f"\n=== Building pipeline from {script_name} ===")
|
| 86 |
|
| 87 |
-
script_path = os.path.join(LOCAL_SCRIPTS_DIR, script_name)
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
| 96 |
-
code = f.read()
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
active_pipeline = pipelines[selected_scripts[0]]
|
| 110 |
-
log(f"Active pipeline → {selected_scripts[0]}")
|
| 111 |
|
| 112 |
-
return
|
| 113 |
|
| 114 |
|
| 115 |
-
#
|
| 116 |
-
# IMAGE GENERATION (UNCHANGED)
|
| 117 |
-
#
|
| 118 |
@spaces.GPU
|
| 119 |
def generate_image(
|
| 120 |
prompt,
|
|
@@ -124,24 +127,28 @@ def generate_image(
|
|
| 124 |
seed,
|
| 125 |
randomize_seed,
|
| 126 |
num_images,
|
| 127 |
-
|
| 128 |
):
|
| 129 |
-
global active_pipeline
|
| 130 |
-
|
| 131 |
log_buffer.truncate(0)
|
| 132 |
log_buffer.seek(0)
|
| 133 |
|
| 134 |
-
if
|
| 135 |
-
raise RuntimeError("Pipeline not
|
| 136 |
|
| 137 |
-
pipe =
|
| 138 |
|
| 139 |
log("=== NEW GENERATION REQUEST ===")
|
| 140 |
-
log(f"Pipeline: {
|
| 141 |
log(f"Prompt: {prompt}")
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
if randomize_seed:
|
| 144 |
seed = torch.randint(0, 2**32 - 1, (1,)).item()
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
num_images = min(max(1, int(num_images)), 3)
|
| 147 |
generator = torch.Generator("cuda").manual_seed(int(seed))
|
|
@@ -158,28 +165,33 @@ def generate_image(
|
|
| 158 |
output_type="pil",
|
| 159 |
)
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
return result.images, seed, log_buffer.getvalue()
|
| 165 |
|
| 166 |
|
| 167 |
-
#
|
| 168 |
# GRADIO UI
|
| 169 |
-
#
|
| 170 |
-
with gr.Blocks(title="Z-Image Turbo –
|
| 171 |
-
gr.Markdown("## ⚡ Z-Image Turbo (Script-Driven
|
| 172 |
|
| 173 |
script_selector = gr.CheckboxGroup(
|
| 174 |
choices=SCRIPT_NAMES,
|
| 175 |
label="Select pipeline scripts",
|
| 176 |
)
|
| 177 |
|
| 178 |
-
|
| 179 |
-
status = gr.Textbox(label="Status")
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
inputs=[script_selector],
|
| 184 |
outputs=[status],
|
| 185 |
)
|
|
@@ -189,7 +201,7 @@ with gr.Blocks(title="Z-Image Turbo – Script Pipelines") as demo:
|
|
| 189 |
label="Active Pipeline",
|
| 190 |
)
|
| 191 |
|
| 192 |
-
|
| 193 |
lambda s: gr.update(choices=s, value=s[0] if s else None),
|
| 194 |
inputs=[script_selector],
|
| 195 |
outputs=[pipeline_picker],
|
|
@@ -200,18 +212,18 @@ with gr.Blocks(title="Z-Image Turbo – Script Pipelines") as demo:
|
|
| 200 |
prompt = gr.Textbox(label="Prompt", lines=3)
|
| 201 |
height = gr.Slider(256, 1024, 512, step=64, label="Height")
|
| 202 |
width = gr.Slider(256, 1024, 512, step=64, label="Width")
|
| 203 |
-
steps = gr.Slider(1, 8, 4, step=1, label="Steps")
|
| 204 |
images = gr.Slider(1, 3, 1, step=1, label="Images")
|
| 205 |
seed = gr.Number(value=0, label="Seed")
|
| 206 |
random_seed = gr.Checkbox(value=True, label="Randomize Seed")
|
| 207 |
|
| 208 |
-
|
| 209 |
|
| 210 |
gallery = gr.Gallery(columns=3)
|
| 211 |
used_seed = gr.Number(label="Used Seed")
|
| 212 |
logs = gr.Textbox(lines=12, label="Logs")
|
| 213 |
|
| 214 |
-
|
| 215 |
generate_image,
|
| 216 |
inputs=[
|
| 217 |
prompt,
|
|
|
|
| 1 |
import spaces
|
| 2 |
import os
|
| 3 |
import io
|
|
|
|
| 4 |
import torch
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import requests
|
| 8 |
from diffusers import DiffusionPipeline
|
| 9 |
|
| 10 |
+
# =========================================================
|
| 11 |
# CONFIG
|
| 12 |
+
# =========================================================
|
| 13 |
SCRIPTS_REPO_API = (
|
| 14 |
"https://api.github.com/repos/asomoza/diffusers-recipes/contents/"
|
| 15 |
"models/z-image/scripts"
|
|
|
|
| 19 |
|
| 20 |
os.makedirs(LOCAL_SCRIPTS_DIR, exist_ok=True)
|
| 21 |
|
| 22 |
+
# =========================================================
|
| 23 |
+
# GLOBAL STATE (CPU SAFE)
|
| 24 |
+
# =========================================================
|
| 25 |
+
SCRIPT_CODE = {} # script_name -> code (CPU only)
|
| 26 |
+
PIPELINES = {} # script_name -> pipeline (GPU only, lazy)
|
| 27 |
log_buffer = io.StringIO()
|
| 28 |
|
| 29 |
|
| 30 |
+
# =========================================================
|
| 31 |
# LOGGING
|
| 32 |
+
# =========================================================
|
| 33 |
def log(msg):
|
| 34 |
print(msg)
|
| 35 |
log_buffer.write(msg + "\n")
|
|
|
|
| 51 |
return f"Expected latent size: ({h}, {w})"
|
| 52 |
|
| 53 |
|
| 54 |
+
# =========================================================
|
| 55 |
+
# DOWNLOAD SCRIPTS (CPU ONLY)
|
| 56 |
+
# =========================================================
|
| 57 |
def download_scripts():
|
| 58 |
resp = requests.get(SCRIPTS_REPO_API)
|
| 59 |
resp.raise_for_status()
|
|
|
|
| 74 |
SCRIPT_NAMES = download_scripts()
|
| 75 |
|
| 76 |
|
| 77 |
+
# =========================================================
|
| 78 |
+
# REGISTER SELECTED SCRIPTS (NO CUDA)
|
| 79 |
+
# =========================================================
|
| 80 |
+
def register_scripts(selected_scripts):
|
| 81 |
+
SCRIPT_CODE.clear()
|
| 82 |
|
| 83 |
+
for name in selected_scripts:
|
| 84 |
+
path = os.path.join(LOCAL_SCRIPTS_DIR, name)
|
| 85 |
+
with open(path, "r") as f:
|
| 86 |
+
SCRIPT_CODE[name] = f.read()
|
| 87 |
|
| 88 |
+
return f"{len(SCRIPT_CODE)} script(s) registered ✅"
|
|
|
|
| 89 |
|
|
|
|
| 90 |
|
| 91 |
+
# =========================================================
|
| 92 |
+
# GPU-ONLY PIPELINE BUILDER (CRITICAL)
|
| 93 |
+
# =========================================================
|
| 94 |
+
@spaces.GPU
|
| 95 |
+
def get_pipeline(script_name):
|
| 96 |
+
if script_name in PIPELINES:
|
| 97 |
+
return PIPELINES[script_name]
|
| 98 |
|
| 99 |
+
log(f"🔧 Building pipeline from {script_name}")
|
|
|
|
| 100 |
|
| 101 |
+
namespace = {
|
| 102 |
+
"torch": torch,
|
| 103 |
+
"DiffusionPipeline": DiffusionPipeline,
|
| 104 |
+
}
|
| 105 |
|
| 106 |
+
# Execute script logic (this WILL touch CUDA)
|
| 107 |
+
exec(SCRIPT_CODE[script_name], namespace)
|
| 108 |
|
| 109 |
+
if "pipe" not in namespace:
|
| 110 |
+
raise RuntimeError(f"{script_name} did not define `pipe`")
|
| 111 |
|
| 112 |
+
PIPELINES[script_name] = namespace["pipe"]
|
| 113 |
+
log(f"✅ Pipeline ready: {script_name}")
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
return PIPELINES[script_name]
|
| 116 |
|
| 117 |
|
| 118 |
+
# =========================================================
|
| 119 |
+
# IMAGE GENERATION (LOGIC UNCHANGED)
|
| 120 |
+
# =========================================================
|
| 121 |
@spaces.GPU
|
| 122 |
def generate_image(
|
| 123 |
prompt,
|
|
|
|
| 127 |
seed,
|
| 128 |
randomize_seed,
|
| 129 |
num_images,
|
| 130 |
+
pipeline_name,
|
| 131 |
):
|
|
|
|
|
|
|
| 132 |
log_buffer.truncate(0)
|
| 133 |
log_buffer.seek(0)
|
| 134 |
|
| 135 |
+
if pipeline_name not in SCRIPT_CODE:
|
| 136 |
+
raise RuntimeError("Pipeline not registered")
|
| 137 |
|
| 138 |
+
pipe = get_pipeline(pipeline_name)
|
| 139 |
|
| 140 |
log("=== NEW GENERATION REQUEST ===")
|
| 141 |
+
log(f"Pipeline: {pipeline_name}")
|
| 142 |
log(f"Prompt: {prompt}")
|
| 143 |
+
log(f"Height: {height}, Width: {width}")
|
| 144 |
+
log(f"Steps: {num_inference_steps}")
|
| 145 |
+
log(f"Images: {num_images}")
|
| 146 |
|
| 147 |
if randomize_seed:
|
| 148 |
seed = torch.randint(0, 2**32 - 1, (1,)).item()
|
| 149 |
+
log(f"Random Seed → {seed}")
|
| 150 |
+
else:
|
| 151 |
+
log(f"Seed → {seed}")
|
| 152 |
|
| 153 |
num_images = min(max(1, int(num_images)), 3)
|
| 154 |
generator = torch.Generator("cuda").manual_seed(int(seed))
|
|
|
|
| 165 |
output_type="pil",
|
| 166 |
)
|
| 167 |
|
| 168 |
+
try:
|
| 169 |
+
log(pipeline_debug_info(pipe))
|
| 170 |
+
log(latent_shape_info(height, width, pipe))
|
| 171 |
+
except Exception as e:
|
| 172 |
+
log(f"Diagnostics error: {e}")
|
| 173 |
+
|
| 174 |
+
log("Generation complete ✅")
|
| 175 |
|
| 176 |
return result.images, seed, log_buffer.getvalue()
|
| 177 |
|
| 178 |
|
| 179 |
+
# =========================================================
|
| 180 |
# GRADIO UI
|
| 181 |
+
# =========================================================
|
| 182 |
+
with gr.Blocks(title="Z-Image Turbo – ZeroGPU") as demo:
|
| 183 |
+
gr.Markdown("## ⚡ Z-Image Turbo (Script-Driven · ZeroGPU Safe)")
|
| 184 |
|
| 185 |
script_selector = gr.CheckboxGroup(
|
| 186 |
choices=SCRIPT_NAMES,
|
| 187 |
label="Select pipeline scripts",
|
| 188 |
)
|
| 189 |
|
| 190 |
+
register_btn = gr.Button("Register Scripts")
|
| 191 |
+
status = gr.Textbox(label="Status", interactive=False)
|
| 192 |
|
| 193 |
+
register_btn.click(
|
| 194 |
+
register_scripts,
|
| 195 |
inputs=[script_selector],
|
| 196 |
outputs=[status],
|
| 197 |
)
|
|
|
|
| 201 |
label="Active Pipeline",
|
| 202 |
)
|
| 203 |
|
| 204 |
+
register_btn.click(
|
| 205 |
lambda s: gr.update(choices=s, value=s[0] if s else None),
|
| 206 |
inputs=[script_selector],
|
| 207 |
outputs=[pipeline_picker],
|
|
|
|
| 212 |
prompt = gr.Textbox(label="Prompt", lines=3)
|
| 213 |
height = gr.Slider(256, 1024, 512, step=64, label="Height")
|
| 214 |
width = gr.Slider(256, 1024, 512, step=64, label="Width")
|
| 215 |
+
steps = gr.Slider(1, 8, 4, step=1, label="Inference Steps")
|
| 216 |
images = gr.Slider(1, 3, 1, step=1, label="Images")
|
| 217 |
seed = gr.Number(value=0, label="Seed")
|
| 218 |
random_seed = gr.Checkbox(value=True, label="Randomize Seed")
|
| 219 |
|
| 220 |
+
run_btn = gr.Button("Generate")
|
| 221 |
|
| 222 |
gallery = gr.Gallery(columns=3)
|
| 223 |
used_seed = gr.Number(label="Used Seed")
|
| 224 |
logs = gr.Textbox(lines=12, label="Logs")
|
| 225 |
|
| 226 |
+
run_btn.click(
|
| 227 |
generate_image,
|
| 228 |
inputs=[
|
| 229 |
prompt,
|