rahul7star commited on
Commit
ab410e0
·
verified ·
1 Parent(s): 5726602

Update app_lora1.py

Browse files
Files changed (1) hide show
  1. app_lora1.py +41 -11
app_lora1.py CHANGED
@@ -2,6 +2,7 @@ import spaces
2
  import os
3
  import io
4
  import torch
 
5
 
6
  import gradio as gr
7
  import requests
@@ -78,6 +79,7 @@ def pipeline_technology_info(pipe):
78
 
79
  return "\n".join(f"• {t}" for t in tech)
80
 
 
81
  def pipeline_debug_info(pipe):
82
  return f"""
83
  Pipeline Info
@@ -94,6 +96,15 @@ def latent_shape_info(height, width, pipe):
94
  return f"Expected latent size: ({h}, {w})"
95
 
96
 
 
 
 
 
 
 
 
 
 
97
  # =========================================================
98
  # DOWNLOAD SCRIPTS (CPU ONLY)
99
  # =========================================================
@@ -134,8 +145,6 @@ def register_scripts(selected_scripts):
134
  # =========================================================
135
  # GPU-ONLY PIPELINE BUILDER (CRITICAL)
136
  # =========================================================
137
-
138
-
139
  def get_pipeline(script_name):
140
  if script_name in PIPELINES:
141
  return PIPELINES[script_name]
@@ -148,6 +157,7 @@ def get_pipeline(script_name):
148
 
149
  # Minimal required globals
150
  "torch": torch,
 
151
  }
152
 
153
  try:
@@ -168,7 +178,6 @@ def get_pipeline(script_name):
168
  return PIPELINES[script_name]
169
 
170
 
171
-
172
  # =========================================================
173
  # IMAGE GENERATION (LOGIC UNCHANGED)
174
  # =========================================================
@@ -190,18 +199,27 @@ def generate_image(
190
  raise RuntimeError("Pipeline not registered")
191
 
192
  pipe = get_pipeline(pipeline_name)
193
-
194
-
195
 
196
-
197
-
198
- # ✅ Correct, universal, ZeroGPU-safe
199
  if not hasattr(pipe, "hf_device_map"):
200
- pipe = pipe.to("cuda")
 
 
 
 
201
  log("=== PIPELINE TECHNOLOGY ===")
202
  log(pipeline_technology_info(pipe))
203
 
 
 
 
 
 
 
204
 
 
 
 
205
  log("=== NEW GENERATION REQUEST ===")
206
  log(f"Pipeline: {pipeline_name}")
207
  log(f"Prompt: {prompt}")
@@ -230,6 +248,13 @@ def generate_image(
230
  output_type="pil",
231
  )
232
 
 
 
 
 
 
 
 
233
  try:
234
  log(pipeline_debug_info(pipe))
235
  log(latent_shape_info(height, width, pipe))
@@ -238,7 +263,7 @@ def generate_image(
238
 
239
  log("Generation complete ✅")
240
 
241
- return result.images, seed, log_buffer.getvalue()
242
 
243
 
244
  # =========================================================
@@ -284,7 +309,12 @@ with gr.Blocks(title="Z-Image Turbo – ZeroGPU") as demo:
284
 
285
  run_btn = gr.Button("Generate")
286
 
287
- gallery = gr.Gallery(columns=3)
 
 
 
 
 
288
  used_seed = gr.Number(label="Used Seed")
289
  logs = gr.Textbox(lines=12, label="Logs")
290
 
 
2
  import os
3
  import io
4
  import torch
5
+ from PIL import Image
6
 
7
  import gradio as gr
8
  import requests
 
79
 
80
  return "\n".join(f"• {t}" for t in tech)
81
 
82
+
83
  def pipeline_debug_info(pipe):
84
  return f"""
85
  Pipeline Info
 
96
  return f"Expected latent size: ({h}, {w})"
97
 
98
 
99
+ # =========================================================
100
+ # PIPELINE FEATURE REGISTRATION HELPER
101
+ # =========================================================
102
+ def register_pipeline_feature(pipe, text: str):
103
+ if not hasattr(pipe, "_enabled_features"):
104
+ pipe._enabled_features = []
105
+ pipe._enabled_features.append(text)
106
+
107
+
108
  # =========================================================
109
  # DOWNLOAD SCRIPTS (CPU ONLY)
110
  # =========================================================
 
145
  # =========================================================
146
  # GPU-ONLY PIPELINE BUILDER (CRITICAL)
147
  # =========================================================
 
 
148
  def get_pipeline(script_name):
149
  if script_name in PIPELINES:
150
  return PIPELINES[script_name]
 
157
 
158
  # Minimal required globals
159
  "torch": torch,
160
+ "register_pipeline_feature": register_pipeline_feature,
161
  }
162
 
163
  try:
 
178
  return PIPELINES[script_name]
179
 
180
 
 
181
  # =========================================================
182
  # IMAGE GENERATION (LOGIC UNCHANGED)
183
  # =========================================================
 
199
  raise RuntimeError("Pipeline not registered")
200
 
201
  pipe = get_pipeline(pipeline_name)
 
 
202
 
203
+ # ✅ Correct, universal, ZeroGPU-safe
 
 
204
  if not hasattr(pipe, "hf_device_map"):
205
+ pipe = pipe.to("cuda")
206
+
207
+ # =========================================================
208
+ # LOG PIPELINE TECHNOLOGY AND REGISTERED FEATURES
209
+ # =========================================================
210
  log("=== PIPELINE TECHNOLOGY ===")
211
  log(pipeline_technology_info(pipe))
212
 
213
+ log("=== PIPELINE FEATURES ===")
214
+ if hasattr(pipe, "_enabled_features"):
215
+ for f in pipe._enabled_features:
216
+ log(f"✔ {f}")
217
+ else:
218
+ log("✔ No explicit pipeline features registered")
219
 
220
+ # =========================================================
221
+ # GENERATION LOG
222
+ # =========================================================
223
  log("=== NEW GENERATION REQUEST ===")
224
  log(f"Pipeline: {pipeline_name}")
225
  log(f"Prompt: {prompt}")
 
248
  output_type="pil",
249
  )
250
 
251
+ # Resize images to 512x512 for Gradio
252
+ fixed_images = []
253
+ for img in result.images:
254
+ if isinstance(img, Image.Image):
255
+ img = img.resize((512, 512), Image.BICUBIC)
256
+ fixed_images.append(img)
257
+
258
  try:
259
  log(pipeline_debug_info(pipe))
260
  log(latent_shape_info(height, width, pipe))
 
263
 
264
  log("Generation complete ✅")
265
 
266
+ return fixed_images, seed, log_buffer.getvalue()
267
 
268
 
269
  # =========================================================
 
309
 
310
  run_btn = gr.Button("Generate")
311
 
312
+ gallery = gr.Gallery(
313
+ columns=3,
314
+ height=512,
315
+ object_fit="contain",
316
+ label="Output (512×512)"
317
+ )
318
  used_seed = gr.Number(label="Used Seed")
319
  logs = gr.Textbox(lines=12, label="Logs")
320