Spaces:
Running
Running
| # Medical Report Analysis Platform | |
| A comprehensive AI-powered platform for analyzing medical PDF reports using 50+ specialized medical models across 9 clinical domains. | |
| ## Features | |
| ### Two-Layer AI Architecture | |
| - **Layer 1**: PDF extraction, document classification, and intelligent routing | |
| - **Layer 2**: Specialized model analysis with concurrent processing and result synthesis | |
| ### 50+ Specialized Medical Models | |
| - **Clinical Notes**: MedGemma 27B, Bio_ClinicalBERT | |
| - **Radiology**: MedGemma 4B Multimodal, MONAI | |
| - **Pathology**: Path Foundation, UNI2-h | |
| - **Cardiology**: HuBERT-ECG | |
| - **Laboratory**: DrLlama, Lab-AI | |
| - **Drug Interactions**: CatBoost DDI | |
| - **Diagnosis & Triage**: MedGemma 27B | |
| - **Medical Coding**: Rayyan Med Coding | |
| - **Mental Health**: MentalBERT | |
| ### Comprehensive Analysis | |
| - Multi-modal content extraction (text, images, tables) | |
| - Document type classification | |
| - Specialized model routing | |
| - Concurrent processing | |
| - Result synthesis and validation | |
| - Clinical insights generation | |
| ### Regulatory Compliance | |
| - HIPAA compliant architecture | |
| - GDPR aligned data processing | |
| - FDA guidance adherence | |
| - Medical-grade security | |
| ## Architecture | |
| ``` | |
| ┌─────────────────────────────────────────────────────────────┐ | |
| │ Frontend (React + TypeScript) │ | |
| │ - Professional medical-grade UI │ | |
| │ - Real-time analysis visualization │ | |
| │ - Comprehensive results display │ | |
| └─────────────────────────────────────────────────────────────┘ | |
| │ | |
| ▼ | |
| ┌─────────────────────────────────────────────────────────────┐ | |
| │ Backend (FastAPI + Python) │ | |
| │ │ | |
| │ ┌─────────────────────────────────────────────────────┐ │ | |
| │ │ Layer 1: PDF Understanding & Classification │ │ | |
| │ │ - PDF Processor (PyMuPDF, OCR) │ │ | |
| │ │ - Document Classifier │ │ | |
| │ │ - Intelligent Routing │ │ | |
| │ └─────────────────────────────────────────────────────┘ │ | |
| │ │ │ | |
| │ ▼ │ | |
| │ ┌─────────────────────────────────────────────────────┐ │ | |
| │ │ Layer 2: Specialized Medical Analysis │ │ | |
| │ │ - Model Router (50+ models) │ │ | |
| │ │ - Concurrent Processing │ │ | |
| │ │ - Analysis Synthesizer │ │ | |
| │ └─────────────────────────────────────────────────────┘ │ | |
| └─────────────────────────────────────────────────────────────┘ | |
| ``` | |
| ## Project Structure | |
| ``` | |
| medical-ai-platform/ | |
| ├── backend/ | |
| │ ├── main.py # FastAPI application | |
| │ ├── pdf_processor.py # PDF extraction | |
| │ ├── document_classifier.py # Document classification | |
| │ ├── model_router.py # Model routing & execution | |
| │ ├── analysis_synthesizer.py # Result synthesis | |
| │ └── requirements.txt # Python dependencies | |
| │ | |
| ├── medical-ai-frontend/ | |
| │ ├── src/ | |
| │ │ ├── App.tsx # Main application | |
| │ │ ├── components/ | |
| │ │ │ ├── Header.tsx # Header component | |
| │ │ │ ├── FileUpload.tsx # File upload interface | |
| │ │ │ ├── AnalysisStatus.tsx # Progress visualization | |
| │ │ │ ├── AnalysisResults.tsx # Results display | |
| │ │ │ └── ModelInfo.tsx # Model information | |
| │ │ └── ... | |
| │ └── ... | |
| │ | |
| └── docs/ # Comprehensive documentation | |
| ├── architecture_design/ | |
| ├── pipeline_design/ | |
| ├── specialized_models_research/ | |
| └── compliance_research/ | |
| ``` | |
| ## Quick Start | |
| ### Backend Setup | |
| ```bash | |
| cd backend | |
| # Install dependencies | |
| pip install -r requirements.txt | |
| # Run the server | |
| python main.py | |
| ``` | |
| The backend will be available at `http://localhost:7860` | |
| ### Frontend Setup | |
| ```bash | |
| cd medical-ai-frontend | |
| # Install dependencies | |
| pnpm install | |
| # Run development server | |
| pnpm dev | |
| ``` | |
| The frontend will be available at `http://localhost:5173` | |
| ## API Endpoints | |
| ### Health Check | |
| ``` | |
| GET /health | |
| ``` | |
| ### Analyze Document | |
| ``` | |
| POST /analyze | |
| Content-Type: multipart/form-data | |
| Body: | |
| - file: PDF file | |
| Response: | |
| { | |
| "job_id": "uuid", | |
| "status": "processing", | |
| "progress": 0.0, | |
| "message": "Analysis started..." | |
| } | |
| ``` | |
| ### Check Status | |
| ``` | |
| GET /status/{job_id} | |
| Response: | |
| { | |
| "job_id": "uuid", | |
| "status": "completed", | |
| "progress": 1.0, | |
| "message": "Analysis complete" | |
| } | |
| ``` | |
| ### Get Results | |
| ``` | |
| GET /results/{job_id} | |
| Response: | |
| { | |
| "job_id": "uuid", | |
| "document_type": "radiology", | |
| "confidence": 0.95, | |
| "analysis": {...}, | |
| "specialized_results": [...], | |
| "summary": "...", | |
| "timestamp": "2025-10-28T18:38:23Z" | |
| } | |
| ``` | |
| ### Supported Models | |
| ``` | |
| GET /supported-models | |
| Response: | |
| { | |
| "domains": { | |
| "clinical_notes": {...}, | |
| "radiology": {...}, | |
| ... | |
| } | |
| } | |
| ``` | |
| ## Deployment | |
| ### Hugging Face Spaces | |
| This platform is designed for deployment on Hugging Face Spaces with GPU support. | |
| 1. Create a new Space on Hugging Face | |
| 2. Select "Docker" as the SDK | |
| 3. Choose GPU hardware (T4 or A100 recommended) | |
| 4. Upload the project files | |
| 5. Configure environment variables (HF_TOKEN if needed) | |
| ### Environment Variables | |
| - `HF_TOKEN`: Hugging Face API token for model access | |
| - `VITE_API_URL`: Backend API URL (for frontend) | |
| ## Development | |
| ### Adding New Models | |
| To add a new specialized model: | |
| 1. Update `model_router.py` with model configuration | |
| 2. Implement model execution logic | |
| 3. Update documentation | |
| ### Extending Analysis | |
| To extend analysis capabilities: | |
| 1. Modify `analysis_synthesizer.py` for new fusion strategies | |
| 2. Update result schema as needed | |
| 3. Enhance frontend visualization | |
| ## Security & Compliance | |
| ### HIPAA Compliance | |
| - Encrypted data transmission | |
| - Secure temporary file handling | |
| - Audit logging | |
| - Access controls | |
| ### GDPR Alignment | |
| - Data minimization | |
| - Privacy by design | |
| - User consent mechanisms | |
| - Right to erasure | |
| ### FDA Guidance | |
| - Transparency in AI decision-making | |
| - Bias detection and mitigation | |
| - Clinical validation frameworks | |
| - Performance monitoring | |
| ## Performance | |
| - **Layer 1 Processing**: < 2 seconds per page | |
| - **Document Classification**: < 500 ms | |
| - **Specialized Analysis**: 2-10 seconds (depending on complexity) | |
| - **Total Analysis Time**: 30-60 seconds for typical reports | |
| ## Limitations & Disclaimer | |
| **IMPORTANT**: This platform provides AI-assisted analysis and is designed for clinical decision support. All results must be reviewed and verified by qualified healthcare professionals. | |
| - Not a substitute for professional medical judgment | |
| - Requires specialist review for clinical decisions | |
| - Performance varies by document quality and type | |
| - Continuous validation required for clinical deployment | |
| ## Support & Documentation | |
| For comprehensive documentation, see the `docs/` directory: | |
| - Architecture Design | |
| - Pipeline Design | |
| - Model Mapping | |
| - Compliance Guidelines | |
| ## License | |
| This project is intended for research and development purposes. Clinical deployment requires appropriate regulatory clearances and compliance verification. | |
| ## Contributors | |
| Built with comprehensive research and design following FDA guidance, HIPAA requirements, GDPR principles, and medical AI best practices. | |
| --- | |
| **Medical Report Analysis Platform** - Advanced AI-Powered Clinical Intelligence | |