Update app.py
Browse files
app.py
CHANGED
|
@@ -40,126 +40,186 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
| 40 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 41 |
|
| 42 |
print("=" * 50)
|
| 43 |
-
print("🎨 T2I-Adapter
|
| 44 |
print("=" * 50)
|
| 45 |
print("Using device:", device)
|
| 46 |
-
print("
|
| 47 |
print("=" * 50)
|
| 48 |
|
| 49 |
from diffusers import (
|
| 50 |
-
StableDiffusionAdapterPipeline,
|
| 51 |
-
T2IAdapter,
|
| 52 |
StableDiffusionXLAdapterPipeline,
|
|
|
|
| 53 |
AutoencoderKL
|
| 54 |
)
|
| 55 |
-
from controlnet_aux import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
import gc
|
| 57 |
|
| 58 |
-
#
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
).to(device)
|
| 78 |
-
|
| 79 |
-
pipe_sd15.enable_attention_slicing()
|
| 80 |
-
print("✅ SD1.5 T2I-Adapter loaded!")
|
| 81 |
-
|
| 82 |
-
except Exception as e:
|
| 83 |
-
print(f"❌ SD1.5 Error: {e}")
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
).to(device)
|
| 92 |
-
|
| 93 |
-
pipe_sdxl = StableDiffusionXLAdapterPipeline.from_pretrained(
|
| 94 |
-
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 95 |
-
adapter=adapter_sdxl_canny,
|
| 96 |
-
torch_dtype=dtype,
|
| 97 |
-
variant="fp16"
|
| 98 |
-
).to(device)
|
| 99 |
-
|
| 100 |
-
if device.type == "cuda":
|
| 101 |
-
pipe_sdxl.enable_model_cpu_offload()
|
| 102 |
-
pipe_sdxl.enable_attention_slicing()
|
| 103 |
-
|
| 104 |
-
print("✅ SDXL T2I-Adapter loaded!")
|
| 105 |
-
|
| 106 |
-
except Exception as e:
|
| 107 |
-
print(f"❌ SDXL Error: {e}")
|
| 108 |
|
| 109 |
MAX_SEED = np.iinfo(np.int32).max
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
"
|
| 114 |
-
"
|
| 115 |
-
"
|
| 116 |
-
"
|
| 117 |
-
"
|
| 118 |
-
"
|
| 119 |
-
"กำหนดเอง (Custom)": ""
|
| 120 |
}
|
| 121 |
|
| 122 |
-
def
|
| 123 |
-
"""
|
| 124 |
image = np.array(image)
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
input_image,
|
| 131 |
-
|
| 132 |
-
|
|
|
|
| 133 |
seed,
|
| 134 |
randomize_seed,
|
| 135 |
guidance_scale,
|
| 136 |
adapter_strength,
|
| 137 |
steps,
|
| 138 |
-
canny_low,
|
| 139 |
-
canny_high,
|
| 140 |
progress=gr.Progress(track_tqdm=True)
|
| 141 |
):
|
| 142 |
-
"""
|
| 143 |
if input_image is None:
|
| 144 |
raise gr.Error("กรุณาอัพโหลดภาพ")
|
| 145 |
|
| 146 |
-
#
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
raise gr.Error("โมเดล SDXL ยังไม่พร้อมใช้งาน")
|
| 151 |
|
| 152 |
-
pipe = pipe_sd15 if model_choice == "SD 1.5" else pipe_sdxl
|
| 153 |
-
|
| 154 |
if randomize_seed:
|
| 155 |
seed = random.randint(0, MAX_SEED)
|
| 156 |
-
|
| 157 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 158 |
original_image = input_image.convert("RGB")
|
| 159 |
|
| 160 |
# Resize
|
| 161 |
width, height = original_image.size
|
| 162 |
-
max_size = 768 if
|
| 163 |
|
| 164 |
if width > max_size or height > max_size:
|
| 165 |
if width > height:
|
|
@@ -173,45 +233,44 @@ def restore_photo(
|
|
| 173 |
new_height = (new_height // 8) * 8
|
| 174 |
original_image = original_image.resize((new_width, new_height), Image.LANCZOS)
|
| 175 |
|
| 176 |
-
#
|
| 177 |
-
|
| 178 |
|
| 179 |
try:
|
| 180 |
result = pipe(
|
| 181 |
-
prompt=
|
| 182 |
-
image=
|
| 183 |
num_inference_steps=steps,
|
| 184 |
guidance_scale=guidance_scale,
|
| 185 |
adapter_conditioning_scale=adapter_strength,
|
| 186 |
generator=generator,
|
| 187 |
).images[0]
|
| 188 |
|
| 189 |
-
# Clean up
|
| 190 |
if device.type == "cuda":
|
| 191 |
torch.cuda.empty_cache()
|
| 192 |
gc.collect()
|
| 193 |
|
| 194 |
-
return result,
|
| 195 |
-
|
| 196 |
except Exception as e:
|
| 197 |
raise gr.Error(f"เกิดข้อผิดพลาด: {str(e)}")
|
| 198 |
|
| 199 |
def load_preset(preset_name):
|
| 200 |
-
|
| 201 |
-
return RESTORATION_PRESETS.get(preset_name, "")
|
| 202 |
|
| 203 |
css="""
|
| 204 |
#col-container {
|
| 205 |
margin: 0 auto;
|
| 206 |
-
max-width:
|
| 207 |
}
|
| 208 |
#main-title h1 {
|
| 209 |
-
font-size: 2.
|
| 210 |
text-align: center;
|
| 211 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 212 |
-webkit-background-clip: text;
|
| 213 |
-webkit-text-fill-color: transparent;
|
| 214 |
background-clip: text;
|
|
|
|
| 215 |
}
|
| 216 |
.feature-box {
|
| 217 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
|
@@ -219,101 +278,116 @@ css="""
|
|
| 219 |
border-radius: 12px;
|
| 220 |
padding: 25px;
|
| 221 |
margin: 20px 0;
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
}
|
| 224 |
"""
|
| 225 |
|
| 226 |
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 227 |
with gr.Column(elem_id="col-container"):
|
| 228 |
-
gr.Markdown("#
|
| 229 |
-
gr.Markdown("###
|
| 230 |
|
| 231 |
gr.HTML("""
|
| 232 |
<div class="feature-box">
|
| 233 |
-
<h3>🎯 T2I-
|
| 234 |
-
<
|
| 235 |
-
<
|
| 236 |
-
<
|
| 237 |
-
<
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
</
|
| 247 |
-
<
|
| 248 |
-
<
|
| 249 |
-
<
|
| 250 |
-
|
| 251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
</div>
|
| 253 |
""")
|
| 254 |
|
| 255 |
with gr.Row():
|
| 256 |
with gr.Column(scale=1):
|
| 257 |
input_image = gr.Image(
|
| 258 |
-
label="📤
|
| 259 |
-
type="pil",
|
| 260 |
height=400
|
| 261 |
)
|
| 262 |
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
)
|
| 269 |
|
| 270 |
preset = gr.Dropdown(
|
| 271 |
-
choices=list(
|
| 272 |
-
label="🎯
|
| 273 |
-
value="ลงสีภาพขาวดำ
|
| 274 |
)
|
| 275 |
|
| 276 |
-
|
| 277 |
-
label="💬 Prompt
|
| 278 |
lines=3,
|
| 279 |
-
value=
|
| 280 |
)
|
| 281 |
|
| 282 |
preset.change(
|
| 283 |
fn=load_preset,
|
| 284 |
inputs=[preset],
|
| 285 |
-
outputs=[
|
| 286 |
)
|
| 287 |
|
| 288 |
-
with gr.Accordion("⚙️ Canny Edge Settings", open=False):
|
| 289 |
-
canny_low = gr.Slider(
|
| 290 |
-
label="Low Threshold",
|
| 291 |
-
minimum=0,
|
| 292 |
-
maximum=255,
|
| 293 |
-
value=50,
|
| 294 |
-
step=1
|
| 295 |
-
)
|
| 296 |
-
canny_high = gr.Slider(
|
| 297 |
-
label="High Threshold",
|
| 298 |
-
minimum=0,
|
| 299 |
-
maximum=255,
|
| 300 |
-
value=150,
|
| 301 |
-
step=1
|
| 302 |
-
)
|
| 303 |
-
|
| 304 |
run_button = gr.Button("✨ Generate", variant="primary", size="lg")
|
| 305 |
-
|
| 306 |
with gr.Column(scale=2):
|
| 307 |
with gr.Row():
|
| 308 |
-
|
| 309 |
-
label="🔍
|
| 310 |
type="pil",
|
| 311 |
-
height=
|
| 312 |
)
|
| 313 |
output_image = gr.Image(
|
| 314 |
-
label="✨ Generated Result",
|
| 315 |
type="pil",
|
| 316 |
-
height=
|
| 317 |
)
|
| 318 |
|
| 319 |
with gr.Accordion("⚙️ Advanced Settings", open=True):
|
|
@@ -326,7 +400,7 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 326 |
value=42
|
| 327 |
)
|
| 328 |
randomize_seed = gr.Checkbox(
|
| 329 |
-
label="🔀 Random
|
| 330 |
value=True
|
| 331 |
)
|
| 332 |
|
|
@@ -336,17 +410,14 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 336 |
minimum=1.0,
|
| 337 |
maximum=20.0,
|
| 338 |
step=0.5,
|
| 339 |
-
value=7.5
|
| 340 |
-
info="ยิ่งสูง = ทำตาม prompt มากขึ้น"
|
| 341 |
)
|
| 342 |
-
|
| 343 |
adapter_strength = gr.Slider(
|
| 344 |
label="🎨 Adapter Strength",
|
| 345 |
minimum=0.0,
|
| 346 |
maximum=1.0,
|
| 347 |
step=0.05,
|
| 348 |
-
value=0.
|
| 349 |
-
info="ยิ่งสูง = รักษาโครงสร้างมากขึ้น"
|
| 350 |
)
|
| 351 |
|
| 352 |
steps = gr.Slider(
|
|
@@ -358,117 +429,117 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 358 |
)
|
| 359 |
|
| 360 |
run_button.click(
|
| 361 |
-
fn=
|
| 362 |
inputs=[
|
| 363 |
-
input_image,
|
| 364 |
-
|
| 365 |
],
|
| 366 |
-
outputs=[output_image,
|
| 367 |
)
|
| 368 |
-
|
| 369 |
gr.Markdown("""
|
| 370 |
---
|
| 371 |
-
### 📚
|
| 372 |
-
|
| 373 |
-
####
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
-
|
| 377 |
-
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
-
|
| 385 |
-
-
|
| 386 |
-
|
| 387 |
-
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
-
|
| 391 |
-
|
| 392 |
-
-
|
| 393 |
-
-
|
| 394 |
-
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
-
|
| 427 |
-
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
- 7
|
| 434 |
-
- 10
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
- 0.
|
| 439 |
-
- 0.
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
**SD 1.5:**
|
| 448 |
-
- เวลา: 20-40 วินาที
|
| 449 |
-
- VRAM: 4-6GB
|
| 450 |
-
- ความละเอียด: 512x512px
|
| 451 |
-
|
| 452 |
-
**SDXL:**
|
| 453 |
-
- เวลา: 60-120 วินาที
|
| 454 |
-
- VRAM: 8-12GB
|
| 455 |
-
- ความละเอียด: 768x768px หรือ 1024x1024px
|
| 456 |
-
|
| 457 |
-
#### 📦 **Dependencies:**
|
| 458 |
```bash
|
| 459 |
-
pip install diffusers transformers
|
| 460 |
pip install controlnet-aux
|
| 461 |
pip install opencv-python
|
| 462 |
-
pip install torch
|
| 463 |
-
pip install gradio
|
| 464 |
```
|
| 465 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 466 |
---
|
| 467 |
|
| 468 |
<div style="text-align:center; color:#666; padding:20px;">
|
| 469 |
-
<strong>🌟 T2I-Adapter</strong><br>
|
| 470 |
-
|
| 471 |
-
<em>TencentARC
|
| 472 |
</div>
|
| 473 |
""")
|
| 474 |
|
|
|
|
| 40 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 41 |
|
| 42 |
print("=" * 50)
|
| 43 |
+
print("🎨 Complete T2I-Adapter Suite")
|
| 44 |
print("=" * 50)
|
| 45 |
print("Using device:", device)
|
| 46 |
+
print("All T2I-Adapters: SD1.5 + SDXL")
|
| 47 |
print("=" * 50)
|
| 48 |
|
| 49 |
from diffusers import (
|
| 50 |
+
StableDiffusionAdapterPipeline,
|
|
|
|
| 51 |
StableDiffusionXLAdapterPipeline,
|
| 52 |
+
T2IAdapter,
|
| 53 |
AutoencoderKL
|
| 54 |
)
|
| 55 |
+
from controlnet_aux import (
|
| 56 |
+
CannyDetector,
|
| 57 |
+
LineartDetector,
|
| 58 |
+
OpenposeDetector,
|
| 59 |
+
MidasDetector,
|
| 60 |
+
PidiNetDetector
|
| 61 |
+
)
|
| 62 |
import gc
|
| 63 |
|
| 64 |
+
# T2I-Adapter models for SD1.5
|
| 65 |
+
SD15_ADAPTERS = {
|
| 66 |
+
"Canny": "TencentARC/t2iadapter_canny_sd15v2",
|
| 67 |
+
"Sketch": "TencentARC/t2iadapter_sketch_sd15v2",
|
| 68 |
+
"Depth": "TencentARC/t2iadapter_depth_sd15v2",
|
| 69 |
+
"OpenPose": "TencentARC/t2iadapter_openpose_sd14v1",
|
| 70 |
+
"Seg": "TencentARC/t2iadapter_seg_sd14v1",
|
| 71 |
+
"Color": "TencentARC/t2iadapter_color_sd14v1",
|
| 72 |
+
"Style": "TencentARC/t2iadapter_style_sd14v1",
|
| 73 |
+
}
|
| 74 |
|
| 75 |
+
# T2I-Adapter models for SDXL
|
| 76 |
+
SDXL_ADAPTERS = {
|
| 77 |
+
"Canny": "TencentARC/t2i-adapter-canny-sdxl-1.0",
|
| 78 |
+
"Sketch": "TencentARC/t2i-adapter-sketch-sdxl-1.0",
|
| 79 |
+
"Lineart": "TencentARC/t2i-adapter-lineart-sdxl-1.0",
|
| 80 |
+
"Depth-Midas": "TencentARC/t2i-adapter-depth-midas-sdxl-1.0",
|
| 81 |
+
"Depth-Zoe": "TencentARC/t2i-adapter-depth-zoe-sdxl-1.0",
|
| 82 |
+
"OpenPose": "TencentARC/t2i-adapter-openpose-sdxl-1.0",
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
# Loaded pipelines cache
|
| 86 |
+
loaded_pipelines = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
# Detectors
|
| 89 |
+
canny_detector = CannyDetector()
|
| 90 |
+
lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
| 91 |
+
openpose_detector = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
|
| 92 |
+
midas_detector = MidasDetector.from_pretrained("lllyasviel/Annotators")
|
| 93 |
+
pidinet_detector = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
MAX_SEED = np.iinfo(np.int32).max
|
| 96 |
|
| 97 |
+
PRESETS = {
|
| 98 |
+
"ลงสีภาพขาวดำ": "colorized vintage photograph with realistic natural colors, professional restoration",
|
| 99 |
+
"ซ่อมแซมภาพเก่า": "fully restored old photograph, enhanced colors, sharp details, professional quality",
|
| 100 |
+
"สไตล์อนิเมะ": "beautiful anime art style, vibrant colors, detailed illustration, high quality",
|
| 101 |
+
"ภาพวาดสีน้ำ": "watercolor painting, soft artistic brushstrokes, painterly effect",
|
| 102 |
+
"ภาพวาดน้ำมัน": "oil painting, rich textures, artistic brushstrokes, classic art style",
|
| 103 |
+
"ถ่ายภาพมืออาชีพ": "professional photograph, high quality, detailed, 4k, sharp focus",
|
| 104 |
+
"สไตล์วินเทจ": "vintage style photograph, nostalgic atmosphere, retro colors",
|
|
|
|
| 105 |
}
|
| 106 |
|
| 107 |
+
def get_control_image(image, adapter_type):
|
| 108 |
+
"""Generate control image based on adapter type"""
|
| 109 |
image = np.array(image)
|
| 110 |
+
|
| 111 |
+
if "Canny" in adapter_type:
|
| 112 |
+
return canny_detector(image)
|
| 113 |
+
elif "Sketch" in adapter_type:
|
| 114 |
+
return pidinet_detector(image, detect_resolution=512, image_resolution=512)
|
| 115 |
+
elif "Lineart" in adapter_type:
|
| 116 |
+
return lineart_detector(image, detect_resolution=512, image_resolution=512)
|
| 117 |
+
elif "Depth" in adapter_type:
|
| 118 |
+
return midas_detector(image)
|
| 119 |
+
elif "OpenPose" in adapter_type:
|
| 120 |
+
return openpose_detector(image)
|
| 121 |
+
elif "Color" in adapter_type:
|
| 122 |
+
# For color adapter, just return the image
|
| 123 |
+
return Image.fromarray(image)
|
| 124 |
+
elif "Seg" in adapter_type or "Style" in adapter_type:
|
| 125 |
+
# These need special preprocessing
|
| 126 |
+
return Image.fromarray(image)
|
| 127 |
+
else:
|
| 128 |
+
return Image.fromarray(image)
|
| 129 |
|
| 130 |
+
def load_pipeline(model_version, adapter_type):
|
| 131 |
+
"""Load or get cached pipeline"""
|
| 132 |
+
cache_key = f"{model_version}_{adapter_type}"
|
| 133 |
+
|
| 134 |
+
if cache_key in loaded_pipelines:
|
| 135 |
+
return loaded_pipelines[cache_key]
|
| 136 |
+
|
| 137 |
+
try:
|
| 138 |
+
# Select adapter model
|
| 139 |
+
if model_version == "SD 1.5":
|
| 140 |
+
adapter_name = SD15_ADAPTERS.get(adapter_type)
|
| 141 |
+
base_model = "runwayml/stable-diffusion-v1-5"
|
| 142 |
+
else:
|
| 143 |
+
adapter_name = SDXL_ADAPTERS.get(adapter_type)
|
| 144 |
+
base_model = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 145 |
+
|
| 146 |
+
if not adapter_name:
|
| 147 |
+
return None
|
| 148 |
+
|
| 149 |
+
print(f"Loading {adapter_name}...")
|
| 150 |
+
|
| 151 |
+
# Load adapter
|
| 152 |
+
adapter = T2IAdapter.from_pretrained(
|
| 153 |
+
adapter_name,
|
| 154 |
+
torch_dtype=dtype,
|
| 155 |
+
variant="fp16" if dtype == torch.float16 else None
|
| 156 |
+
).to(device)
|
| 157 |
+
|
| 158 |
+
# Load pipeline
|
| 159 |
+
if model_version == "SD 1.5":
|
| 160 |
+
pipe = StableDiffusionAdapterPipeline.from_pretrained(
|
| 161 |
+
base_model,
|
| 162 |
+
adapter=adapter,
|
| 163 |
+
torch_dtype=dtype,
|
| 164 |
+
safety_checker=None
|
| 165 |
+
).to(device)
|
| 166 |
+
else:
|
| 167 |
+
vae = AutoencoderKL.from_pretrained(
|
| 168 |
+
"madebyollin/sdxl-vae-fp16-fix",
|
| 169 |
+
torch_dtype=dtype
|
| 170 |
+
).to(device)
|
| 171 |
+
|
| 172 |
+
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
|
| 173 |
+
base_model,
|
| 174 |
+
adapter=adapter,
|
| 175 |
+
vae=vae,
|
| 176 |
+
torch_dtype=dtype,
|
| 177 |
+
variant="fp16" if dtype == torch.float16 else None
|
| 178 |
+
).to(device)
|
| 179 |
+
|
| 180 |
+
if device.type == "cuda":
|
| 181 |
+
pipe.enable_model_cpu_offload()
|
| 182 |
+
pipe.enable_attention_slicing()
|
| 183 |
+
|
| 184 |
+
loaded_pipelines[cache_key] = pipe
|
| 185 |
+
print(f"✅ Loaded {cache_key}")
|
| 186 |
+
|
| 187 |
+
return pipe
|
| 188 |
+
|
| 189 |
+
except Exception as e:
|
| 190 |
+
print(f"❌ Error loading {cache_key}: {e}")
|
| 191 |
+
return None
|
| 192 |
+
|
| 193 |
+
def generate_image(
|
| 194 |
input_image,
|
| 195 |
+
prompt,
|
| 196 |
+
model_version,
|
| 197 |
+
adapter_type,
|
| 198 |
seed,
|
| 199 |
randomize_seed,
|
| 200 |
guidance_scale,
|
| 201 |
adapter_strength,
|
| 202 |
steps,
|
|
|
|
|
|
|
| 203 |
progress=gr.Progress(track_tqdm=True)
|
| 204 |
):
|
| 205 |
+
"""Generate image with T2I-Adapter"""
|
| 206 |
if input_image is None:
|
| 207 |
raise gr.Error("กรุณาอัพโหลดภาพ")
|
| 208 |
|
| 209 |
+
# Load pipeline
|
| 210 |
+
pipe = load_pipeline(model_version, adapter_type)
|
| 211 |
+
if pipe is None:
|
| 212 |
+
raise gr.Error(f"ไม่สามารถโหลด {model_version} + {adapter_type}")
|
|
|
|
| 213 |
|
|
|
|
|
|
|
| 214 |
if randomize_seed:
|
| 215 |
seed = random.randint(0, MAX_SEED)
|
| 216 |
+
|
| 217 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 218 |
original_image = input_image.convert("RGB")
|
| 219 |
|
| 220 |
# Resize
|
| 221 |
width, height = original_image.size
|
| 222 |
+
max_size = 768 if model_version == "SDXL" else 512
|
| 223 |
|
| 224 |
if width > max_size or height > max_size:
|
| 225 |
if width > height:
|
|
|
|
| 233 |
new_height = (new_height // 8) * 8
|
| 234 |
original_image = original_image.resize((new_width, new_height), Image.LANCZOS)
|
| 235 |
|
| 236 |
+
# Generate control image
|
| 237 |
+
control_image = get_control_image(original_image, adapter_type)
|
| 238 |
|
| 239 |
try:
|
| 240 |
result = pipe(
|
| 241 |
+
prompt=prompt,
|
| 242 |
+
image=control_image,
|
| 243 |
num_inference_steps=steps,
|
| 244 |
guidance_scale=guidance_scale,
|
| 245 |
adapter_conditioning_scale=adapter_strength,
|
| 246 |
generator=generator,
|
| 247 |
).images[0]
|
| 248 |
|
|
|
|
| 249 |
if device.type == "cuda":
|
| 250 |
torch.cuda.empty_cache()
|
| 251 |
gc.collect()
|
| 252 |
|
| 253 |
+
return result, control_image, seed
|
| 254 |
+
|
| 255 |
except Exception as e:
|
| 256 |
raise gr.Error(f"เกิดข้อผิดพลาด: {str(e)}")
|
| 257 |
|
| 258 |
def load_preset(preset_name):
|
| 259 |
+
return PRESETS.get(preset_name, "")
|
|
|
|
| 260 |
|
| 261 |
css="""
|
| 262 |
#col-container {
|
| 263 |
margin: 0 auto;
|
| 264 |
+
max-width: 1800px;
|
| 265 |
}
|
| 266 |
#main-title h1 {
|
| 267 |
+
font-size: 2.8em !important;
|
| 268 |
text-align: center;
|
| 269 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 270 |
-webkit-background-clip: text;
|
| 271 |
-webkit-text-fill-color: transparent;
|
| 272 |
background-clip: text;
|
| 273 |
+
margin-bottom: 10px;
|
| 274 |
}
|
| 275 |
.feature-box {
|
| 276 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
|
|
|
| 278 |
border-radius: 12px;
|
| 279 |
padding: 25px;
|
| 280 |
margin: 20px 0;
|
| 281 |
+
}
|
| 282 |
+
.adapter-grid {
|
| 283 |
+
display: grid;
|
| 284 |
+
grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
|
| 285 |
+
gap: 10px;
|
| 286 |
+
margin: 15px 0;
|
| 287 |
}
|
| 288 |
"""
|
| 289 |
|
| 290 |
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 291 |
with gr.Column(elem_id="col-container"):
|
| 292 |
+
gr.Markdown("# 🎨 Complete T2I-Adapter Suite", elem_id="main-title")
|
| 293 |
+
gr.Markdown("### 📸 All TencentARC T2I-Adapters for SD1.5 & SDXL")
|
| 294 |
|
| 295 |
gr.HTML("""
|
| 296 |
<div class="feature-box">
|
| 297 |
+
<h3>🎯 Available T2I-Adapters</h3>
|
| 298 |
+
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 20px;">
|
| 299 |
+
<div>
|
| 300 |
+
<h4>📘 SD 1.5 Adapters:</h4>
|
| 301 |
+
<ul style="color:white;">
|
| 302 |
+
<li><strong>Canny</strong> - Edge detection</li>
|
| 303 |
+
<li><strong>Sketch</strong> - Sketch/scribble</li>
|
| 304 |
+
<li><strong>Depth</strong> - Depth map</li>
|
| 305 |
+
<li><strong>OpenPose</strong> - Human pose</li>
|
| 306 |
+
<li><strong>Seg</strong> - Segmentation map</li>
|
| 307 |
+
<li><strong>Color</strong> - Color palette</li>
|
| 308 |
+
<li><strong>Style</strong> - Style transfer</li>
|
| 309 |
+
</ul>
|
| 310 |
+
</div>
|
| 311 |
+
<div>
|
| 312 |
+
<h4>📗 SDXL Adapters:</h4>
|
| 313 |
+
<ul style="color:white;">
|
| 314 |
+
<li><strong>Canny</strong> - Edge detection (XL)</li>
|
| 315 |
+
<li><strong>Sketch</strong> - Sketch/scribble (XL)</li>
|
| 316 |
+
<li><strong>Lineart</strong> - Line art</li>
|
| 317 |
+
<li><strong>Depth-Midas</strong> - Depth (Midas)</li>
|
| 318 |
+
<li><strong>Depth-Zoe</strong> - Depth (ZoeDepth)</li>
|
| 319 |
+
<li><strong>OpenPose</strong> - Human pose (XL)</li>
|
| 320 |
+
</ul>
|
| 321 |
+
</div>
|
| 322 |
+
</div>
|
| 323 |
</div>
|
| 324 |
""")
|
| 325 |
|
| 326 |
with gr.Row():
|
| 327 |
with gr.Column(scale=1):
|
| 328 |
input_image = gr.Image(
|
| 329 |
+
label="📤 Input Image",
|
| 330 |
+
type="pil",
|
| 331 |
height=400
|
| 332 |
)
|
| 333 |
|
| 334 |
+
with gr.Row():
|
| 335 |
+
model_version = gr.Radio(
|
| 336 |
+
choices=["SD 1.5", "SDXL"],
|
| 337 |
+
label="🤖 Model Version",
|
| 338 |
+
value="SD 1.5",
|
| 339 |
+
info="SD 1.5 = Fast | SDXL = High Quality"
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
adapter_type = gr.Dropdown(
|
| 343 |
+
choices=list(SD15_ADAPTERS.keys()),
|
| 344 |
+
label="🎨 Adapter Type",
|
| 345 |
+
value="Canny"
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
def update_adapter_choices(version):
|
| 349 |
+
if version == "SD 1.5":
|
| 350 |
+
return gr.Dropdown(choices=list(SD15_ADAPTERS.keys()), value="Canny")
|
| 351 |
+
else:
|
| 352 |
+
return gr.Dropdown(choices=list(SDXL_ADAPTERS.keys()), value="Canny")
|
| 353 |
+
|
| 354 |
+
model_version.change(
|
| 355 |
+
fn=update_adapter_choices,
|
| 356 |
+
inputs=[model_version],
|
| 357 |
+
outputs=[adapter_type]
|
| 358 |
)
|
| 359 |
|
| 360 |
preset = gr.Dropdown(
|
| 361 |
+
choices=list(PRESETS.keys()),
|
| 362 |
+
label="🎯 Preset",
|
| 363 |
+
value="ลงสีภาพขาวดำ"
|
| 364 |
)
|
| 365 |
|
| 366 |
+
prompt = gr.Textbox(
|
| 367 |
+
label="💬 Prompt",
|
| 368 |
lines=3,
|
| 369 |
+
value=PRESETS["ลงสีภาพขาวดำ"]
|
| 370 |
)
|
| 371 |
|
| 372 |
preset.change(
|
| 373 |
fn=load_preset,
|
| 374 |
inputs=[preset],
|
| 375 |
+
outputs=[prompt]
|
| 376 |
)
|
| 377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 378 |
run_button = gr.Button("✨ Generate", variant="primary", size="lg")
|
| 379 |
+
|
| 380 |
with gr.Column(scale=2):
|
| 381 |
with gr.Row():
|
| 382 |
+
control_output = gr.Image(
|
| 383 |
+
label="🔍 Control Image",
|
| 384 |
type="pil",
|
| 385 |
+
height=380
|
| 386 |
)
|
| 387 |
output_image = gr.Image(
|
| 388 |
+
label="✨ Generated Result",
|
| 389 |
type="pil",
|
| 390 |
+
height=380
|
| 391 |
)
|
| 392 |
|
| 393 |
with gr.Accordion("⚙️ Advanced Settings", open=True):
|
|
|
|
| 400 |
value=42
|
| 401 |
)
|
| 402 |
randomize_seed = gr.Checkbox(
|
| 403 |
+
label="🔀 Random",
|
| 404 |
value=True
|
| 405 |
)
|
| 406 |
|
|
|
|
| 410 |
minimum=1.0,
|
| 411 |
maximum=20.0,
|
| 412 |
step=0.5,
|
| 413 |
+
value=7.5
|
|
|
|
| 414 |
)
|
|
|
|
| 415 |
adapter_strength = gr.Slider(
|
| 416 |
label="🎨 Adapter Strength",
|
| 417 |
minimum=0.0,
|
| 418 |
maximum=1.0,
|
| 419 |
step=0.05,
|
| 420 |
+
value=0.8
|
|
|
|
| 421 |
)
|
| 422 |
|
| 423 |
steps = gr.Slider(
|
|
|
|
| 429 |
)
|
| 430 |
|
| 431 |
run_button.click(
|
| 432 |
+
fn=generate_image,
|
| 433 |
inputs=[
|
| 434 |
+
input_image, prompt, model_version, adapter_type,
|
| 435 |
+
seed, randomize_seed, guidance_scale, adapter_strength, steps
|
| 436 |
],
|
| 437 |
+
outputs=[output_image, control_output, seed]
|
| 438 |
)
|
| 439 |
+
|
| 440 |
gr.Markdown("""
|
| 441 |
---
|
| 442 |
+
### 📚 Complete T2I-Adapter Guide
|
| 443 |
+
|
| 444 |
+
#### 🎨 **Adapter Types Explained:**
|
| 445 |
+
|
| 446 |
+
**🖼️ Canny** - แยก edge/โครงร่างจากภาพ
|
| 447 |
+
- เหมาะสำหรับ: รักษาโครงสร้างแต่เปลี่ยนสไตล์
|
| 448 |
+
- ใช้เมื่อ: ต้องการควบคุมรูปร่างของวัตถุ
|
| 449 |
+
|
| 450 |
+
**✏️ Sketch** - ใช้ภาพร่าง/scribble
|
| 451 |
+
- เหมาะสำหรับ: วาดร่างแล้วให้ AI เติมรายละเอียด
|
| 452 |
+
- ใช้เมื่อ: มีภาพร่างคร่าวๆ
|
| 453 |
+
|
| 454 |
+
**📏 Lineart** - ใช้เส้นสายศิลปะ
|
| 455 |
+
- เหมาะสำหรับ: manga, comic, line art
|
| 456 |
+
- ใช้เมื่อ: ต้องการเส้นสายที่สะอาด
|
| 457 |
+
|
| 458 |
+
**🏔️ Depth** - ใช้ depth map (ความลึก)
|
| 459 |
+
- เหมาะสำหรับ: ควบคุม perspective และ depth
|
| 460 |
+
- ใช้เมื่อ: ต้องการรักษาความลึกของภาพ
|
| 461 |
+
- **Midas** vs **Zoe**: Zoe แม่นยำกว่า
|
| 462 |
+
|
| 463 |
+
**🚶 OpenPose** - ใช้ท่าทางมนุษย์
|
| 464 |
+
- เหมาะสำหรับ: เปลี่ยนคนในภาพแต่รักษาท่าทาง
|
| 465 |
+
- ใช้เมื่อ: มีภาพคน ต้องการเปลี่ยนรูปลักษณ์
|
| 466 |
+
|
| 467 |
+
**🎨 Color** - ใช้ color palette
|
| 468 |
+
- เหมาะสำหรับ: ควบคุมสีในแต่ละพื้นที่
|
| 469 |
+
- ใช้เมื่อ: ต้องการกำหนดสีเฉพาะจุด
|
| 470 |
+
|
| 471 |
+
**🖌️ Seg** - ใช้ segmentation map
|
| 472 |
+
- เหมาะสำหรับ: แบ่งพื้นที่ของวัตถุ
|
| 473 |
+
- ใช้เมื่อ: ต้องการควบคุมแต่ละ object
|
| 474 |
+
|
| 475 |
+
**🎭 Style** - Style transfer
|
| 476 |
+
- เหมาะสำหรับ: เปลี่ยนสไตล์ภาพ
|
| 477 |
+
- ใช้เมื่อ: ต้องการเลียนแบบสไตล์
|
| 478 |
+
|
| 479 |
+
#### 💡 **Use Cases:**
|
| 480 |
+
|
| 481 |
+
✅ **ลงสีภาพขาวดำ:**
|
| 482 |
+
- Adapter: **Canny** หรือ **Sketch**
|
| 483 |
+
- Strength: 0.75-0.85
|
| 484 |
+
- Prompt: "colorized photograph with realistic colors"
|
| 485 |
+
|
| 486 |
+
✅ **เปลี่ยนท่าคน:**
|
| 487 |
+
- Adapter: **OpenPose**
|
| 488 |
+
- Strength: 0.8-0.9
|
| 489 |
+
- Prompt: อธิบายคนที่ต้องการ
|
| 490 |
+
|
| 491 |
+
✅ **manga ➜ realistic:**
|
| 492 |
+
- Adapter: **Lineart**
|
| 493 |
+
- Strength: 0.7-0.8
|
| 494 |
+
- Prompt: "realistic photograph"
|
| 495 |
+
|
| 496 |
+
✅ **เปลี่ยนสไตล์:**
|
| 497 |
+
- Adapter: **Canny** (รักษารูปร่าง)
|
| 498 |
+
- Strength: 0.6-0.75
|
| 499 |
+
- Prompt: "anime style" / "oil painting"
|
| 500 |
+
|
| 501 |
+
#### ⚙️ **Settings Guide:**
|
| 502 |
+
|
| 503 |
+
**Guidance Scale:**
|
| 504 |
+
- 5-7: Creative, loose
|
| 505 |
+
- 7-10: Balanced ✅
|
| 506 |
+
- 10-15: Strict prompt following
|
| 507 |
+
|
| 508 |
+
**Adapter Strength:**
|
| 509 |
+
- 0.5-0.6: Very loose control
|
| 510 |
+
- 0.7-0.8: Balanced ✅
|
| 511 |
+
- 0.85-1.0: Strict structure preservation
|
| 512 |
+
|
| 513 |
+
**Model Choice:**
|
| 514 |
+
- **SD 1.5**: 20-40s, 512px, 4-6GB VRAM
|
| 515 |
+
- **SDXL**: 60-120s, 768-1024px, 8-12GB VRAM
|
| 516 |
+
|
| 517 |
+
#### 📦 **Installation:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 518 |
```bash
|
| 519 |
+
pip install diffusers transformers accelerate
|
| 520 |
pip install controlnet-aux
|
| 521 |
pip install opencv-python
|
| 522 |
+
pip install torch gradio
|
|
|
|
| 523 |
```
|
| 524 |
|
| 525 |
+
#### 🔬 **Technical Details:**
|
| 526 |
+
|
| 527 |
+
**T2I-Adapter vs ControlNet:**
|
| 528 |
+
- T2I-Adapter: ⚡ Lighter (~77M params)
|
| 529 |
+
- ControlNet: 💪 More control (~600M params)
|
| 530 |
+
- T2I-Adapter: Better for style changes
|
| 531 |
+
- ControlNet: Better for precise control
|
| 532 |
+
|
| 533 |
+
**Multi-Adapter Support:**
|
| 534 |
+
- รวม adapter หลายตัวได้ (เช่น Canny + Depth)
|
| 535 |
+
- ใช้ `MultiAdapter` class
|
| 536 |
+
|
| 537 |
---
|
| 538 |
|
| 539 |
<div style="text-align:center; color:#666; padding:20px;">
|
| 540 |
+
<strong>🌟 T2I-Adapter Complete Suite</strong><br>
|
| 541 |
+
13 Adapters: 7 for SD1.5 + 6 for SDXL<br>
|
| 542 |
+
<em>TencentARC × Peking University VILLA</em>
|
| 543 |
</div>
|
| 544 |
""")
|
| 545 |
|