Update app.py
Browse files
app.py
CHANGED
|
@@ -37,198 +37,119 @@ class SteelBlueTheme(Soft):
|
|
| 37 |
steel_blue_theme = SteelBlueTheme()
|
| 38 |
|
| 39 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 40 |
-
dtype = torch.
|
| 41 |
|
| 42 |
print("=" * 50)
|
| 43 |
-
print("🎨
|
| 44 |
print("=" * 50)
|
| 45 |
print("Using device:", device)
|
|
|
|
| 46 |
print("=" * 50)
|
| 47 |
|
| 48 |
-
from diffusers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
import gc
|
| 50 |
|
| 51 |
-
# ControlNet Models - Using manga recolor
|
| 52 |
-
CONTROLNET_MODELS = {
|
| 53 |
-
"ไม่ใช้ (None)": None,
|
| 54 |
-
"Manga Recolor (Recommended)": "SubMaroon/ControlNet-manga-recolor",
|
| 55 |
-
}
|
| 56 |
-
|
| 57 |
# Initialize models
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
| 62 |
|
| 63 |
-
# Load base SDXL model
|
| 64 |
try:
|
| 65 |
-
print("🔄
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
vae = AutoencoderKL.from_pretrained(
|
| 69 |
-
"madebyollin/sdxl-vae-fp16-fix",
|
| 70 |
torch_dtype=dtype
|
| 71 |
-
)
|
| 72 |
|
| 73 |
-
|
| 74 |
-
"
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
torch_dtype=dtype,
|
| 77 |
-
use_safetensors=True,
|
| 78 |
variant="fp16"
|
| 79 |
-
)
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
|
| 83 |
-
base_pipe.enable_attention_slicing()
|
| 84 |
-
if hasattr(base_pipe, 'enable_vae_slicing'):
|
| 85 |
-
base_pipe.enable_vae_slicing()
|
| 86 |
-
if hasattr(base_pipe, 'enable_model_cpu_offload') and device.type == "cuda":
|
| 87 |
-
base_pipe.enable_model_cpu_offload()
|
| 88 |
|
| 89 |
-
print("✅ โหลด Base Model สำเร็จ!")
|
| 90 |
except Exception as e:
|
| 91 |
-
print(f"❌
|
| 92 |
-
print("💡 Trying fallback model...")
|
| 93 |
-
try:
|
| 94 |
-
base_pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 95 |
-
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 96 |
-
torch_dtype=dtype,
|
| 97 |
-
use_safetensors=True,
|
| 98 |
-
variant="fp16"
|
| 99 |
-
)
|
| 100 |
-
base_pipe.to(device)
|
| 101 |
-
print("✅ Loaded fallback model")
|
| 102 |
-
except Exception as e2:
|
| 103 |
-
print(f"❌ Fallback also failed: {e2}")
|
| 104 |
|
| 105 |
MAX_SEED = np.iinfo(np.int32).max
|
| 106 |
|
|
|
|
| 107 |
RESTORATION_PRESETS = {
|
| 108 |
-
"
|
| 109 |
-
"
|
| 110 |
-
"
|
| 111 |
-
"
|
| 112 |
-
"
|
| 113 |
-
"
|
| 114 |
-
"อนิเมะแอคชั่น (Action Anime)": "dynamic action anime style, intense colors, dramatic composition, high energy",
|
| 115 |
"กำหนดเอง (Custom)": ""
|
| 116 |
}
|
| 117 |
|
| 118 |
-
def
|
| 119 |
-
"""
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
if controlnet_type == "Manga Recolor (Recommended)":
|
| 126 |
-
# Convert to grayscale for manga-style lineart
|
| 127 |
-
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
| 128 |
-
|
| 129 |
-
# Apply adaptive thresholding for manga-like effect
|
| 130 |
-
manga = cv2.adaptiveThreshold(
|
| 131 |
-
gray, 255,
|
| 132 |
-
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 133 |
-
cv2.THRESH_BINARY,
|
| 134 |
-
11, 2
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
-
# Invert to get black lines on white
|
| 138 |
-
manga = cv2.bitwise_not(manga)
|
| 139 |
-
|
| 140 |
-
# Convert back to RGB
|
| 141 |
-
manga_rgb = cv2.cvtColor(manga, cv2.COLOR_GRAY2RGB)
|
| 142 |
-
|
| 143 |
-
return Image.fromarray(manga_rgb)
|
| 144 |
-
|
| 145 |
-
return image
|
| 146 |
-
|
| 147 |
-
def load_controlnet_model(controlnet_type):
|
| 148 |
-
"""Load ControlNet model for SDXL"""
|
| 149 |
-
global current_controlnet, current_pipe, controlnet_cache
|
| 150 |
-
|
| 151 |
-
if controlnet_type == "ไม่ใช้ (None)":
|
| 152 |
-
current_pipe = base_pipe
|
| 153 |
-
current_controlnet = None
|
| 154 |
-
return base_pipe
|
| 155 |
-
|
| 156 |
-
# Check cache
|
| 157 |
-
if controlnet_type in controlnet_cache:
|
| 158 |
-
current_pipe = controlnet_cache[controlnet_type]
|
| 159 |
-
current_controlnet = controlnet_type
|
| 160 |
-
return current_pipe
|
| 161 |
-
|
| 162 |
-
model_id = CONTROLNET_MODELS.get(controlnet_type)
|
| 163 |
-
if model_id is None:
|
| 164 |
-
return base_pipe
|
| 165 |
-
|
| 166 |
-
try:
|
| 167 |
-
print(f"🔄 Loading {controlnet_type}...")
|
| 168 |
-
|
| 169 |
-
# Load ControlNet
|
| 170 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 171 |
-
model_id,
|
| 172 |
-
torch_dtype=dtype
|
| 173 |
-
)
|
| 174 |
-
|
| 175 |
-
# Load VAE
|
| 176 |
-
vae = AutoencoderKL.from_pretrained(
|
| 177 |
-
"madebyollin/sdxl-vae-fp16-fix",
|
| 178 |
-
torch_dtype=dtype
|
| 179 |
-
)
|
| 180 |
-
|
| 181 |
-
# Create ControlNet Pipeline with SDXL
|
| 182 |
-
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 183 |
-
"John6666/nsfw-anime-xl-v1-sdxl",
|
| 184 |
-
controlnet=controlnet,
|
| 185 |
-
vae=vae,
|
| 186 |
-
torch_dtype=dtype,
|
| 187 |
-
use_safetensors=True,
|
| 188 |
-
variant="fp16"
|
| 189 |
-
)
|
| 190 |
-
pipe.to(device)
|
| 191 |
-
|
| 192 |
-
# Optimizations
|
| 193 |
-
pipe.enable_attention_slicing()
|
| 194 |
-
if hasattr(pipe, 'enable_vae_slicing'):
|
| 195 |
-
pipe.enable_vae_slicing()
|
| 196 |
-
if hasattr(pipe, 'enable_model_cpu_offload') and device.type == "cuda":
|
| 197 |
-
pipe.enable_model_cpu_offload()
|
| 198 |
-
|
| 199 |
-
# Cache it
|
| 200 |
-
controlnet_cache[controlnet_type] = pipe
|
| 201 |
-
current_pipe = pipe
|
| 202 |
-
current_controlnet = controlnet_type
|
| 203 |
-
|
| 204 |
-
print(f"✅ Loaded {controlnet_type}!")
|
| 205 |
-
return pipe
|
| 206 |
-
|
| 207 |
-
except Exception as e:
|
| 208 |
-
print(f"❌ ControlNet Error: {e}")
|
| 209 |
-
print("💡 Using base model instead")
|
| 210 |
-
current_pipe = base_pipe
|
| 211 |
-
current_controlnet = None
|
| 212 |
-
return base_pipe
|
| 213 |
|
| 214 |
def restore_photo(
|
| 215 |
input_image,
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
controlnet_type,
|
| 219 |
-
controlnet_strength,
|
| 220 |
seed,
|
| 221 |
randomize_seed,
|
| 222 |
guidance_scale,
|
|
|
|
| 223 |
steps,
|
|
|
|
|
|
|
| 224 |
progress=gr.Progress(track_tqdm=True)
|
| 225 |
):
|
| 226 |
-
"""Restore
|
| 227 |
if input_image is None:
|
| 228 |
raise gr.Error("กรุณาอัพโหลดภาพ")
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
if randomize_seed:
|
| 234 |
seed = random.randint(0, MAX_SEED)
|
|
@@ -236,99 +157,49 @@ def restore_photo(
|
|
| 236 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 237 |
original_image = input_image.convert("RGB")
|
| 238 |
|
| 239 |
-
# Resize
|
| 240 |
width, height = original_image.size
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
original_image = original_image.resize((new_width, new_height), Image.LANCZOS)
|
| 255 |
|
| 256 |
-
|
|
|
|
| 257 |
|
| 258 |
try:
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
if control_image is not None:
|
| 268 |
-
# Load ControlNet model
|
| 269 |
-
progress(0.4, desc="Loading model...")
|
| 270 |
-
pipe = load_controlnet_model(controlnet_type)
|
| 271 |
-
|
| 272 |
-
if pipe is not None and current_controlnet == controlnet_type:
|
| 273 |
-
progress(0.6, desc="Generating with ControlNet...")
|
| 274 |
-
|
| 275 |
-
result = pipe(
|
| 276 |
-
prompt=prompt,
|
| 277 |
-
negative_prompt=negative_prompt,
|
| 278 |
-
image=control_image,
|
| 279 |
-
num_inference_steps=int(steps),
|
| 280 |
-
guidance_scale=float(guidance_scale),
|
| 281 |
-
controlnet_conditioning_scale=float(controlnet_strength),
|
| 282 |
-
generator=generator,
|
| 283 |
-
).images[0]
|
| 284 |
-
|
| 285 |
-
if device.type == "cuda":
|
| 286 |
-
torch.cuda.empty_cache()
|
| 287 |
-
gc.collect()
|
| 288 |
-
|
| 289 |
-
return result, control_preview, seed
|
| 290 |
|
| 291 |
-
#
|
| 292 |
-
|
|
|
|
|
|
|
| 293 |
|
| 294 |
-
|
| 295 |
-
if pipe is not None:
|
| 296 |
-
# Use img2img with low denoising for colorization
|
| 297 |
-
result = pipe(
|
| 298 |
-
prompt=prompt,
|
| 299 |
-
negative_prompt=negative_prompt,
|
| 300 |
-
num_inference_steps=int(steps),
|
| 301 |
-
guidance_scale=float(guidance_scale),
|
| 302 |
-
generator=generator,
|
| 303 |
-
).images[0]
|
| 304 |
-
|
| 305 |
-
# Blend with original for better preservation
|
| 306 |
-
result = Image.blend(original_image, result, alpha=0.7)
|
| 307 |
-
|
| 308 |
-
if device.type == "cuda":
|
| 309 |
-
torch.cuda.empty_cache()
|
| 310 |
-
gc.collect()
|
| 311 |
-
|
| 312 |
-
return result, control_preview, seed
|
| 313 |
-
|
| 314 |
-
raise gr.Error("ไม่มีโมเดลพร้อมใช้งาน")
|
| 315 |
|
| 316 |
except Exception as e:
|
| 317 |
-
print(f"Error details: {e}")
|
| 318 |
-
import traceback
|
| 319 |
-
traceback.print_exc()
|
| 320 |
raise gr.Error(f"เกิดข้อผิดพลาด: {str(e)}")
|
| 321 |
|
| 322 |
def load_preset(preset_name):
|
| 323 |
"""Load restoration preset"""
|
| 324 |
return RESTORATION_PRESETS.get(preset_name, "")
|
| 325 |
|
| 326 |
-
def update_controlnet_visibility(controlnet_type):
|
| 327 |
-
"""Update visibility of controlnet strength slider"""
|
| 328 |
-
if controlnet_type == "ไม่ใช้ (None)":
|
| 329 |
-
return gr.update(visible=False)
|
| 330 |
-
return gr.update(visible=True)
|
| 331 |
-
|
| 332 |
css="""
|
| 333 |
#col-container {
|
| 334 |
margin: 0 auto;
|
|
@@ -337,260 +208,268 @@ css="""
|
|
| 337 |
#main-title h1 {
|
| 338 |
font-size: 2.5em !important;
|
| 339 |
text-align: center;
|
| 340 |
-
background: linear-gradient(135deg, #
|
| 341 |
-webkit-background-clip: text;
|
| 342 |
-webkit-text-fill-color: transparent;
|
| 343 |
background-clip: text;
|
| 344 |
}
|
| 345 |
.feature-box {
|
| 346 |
-
background: linear-gradient(135deg, #
|
| 347 |
color: white;
|
| 348 |
border-radius: 12px;
|
| 349 |
padding: 25px;
|
| 350 |
margin: 20px 0;
|
| 351 |
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
| 352 |
}
|
| 353 |
-
.controlnet-info {
|
| 354 |
-
background: #fff0f5;
|
| 355 |
-
border-left: 4px solid #FF6B9D;
|
| 356 |
-
padding: 15px;
|
| 357 |
-
margin: 10px 0;
|
| 358 |
-
border-radius: 8px;
|
| 359 |
-
}
|
| 360 |
"""
|
| 361 |
|
| 362 |
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 363 |
with gr.Column(elem_id="col-container"):
|
| 364 |
-
gr.Markdown("#
|
| 365 |
-
gr.Markdown("### ✨
|
| 366 |
|
| 367 |
gr.HTML("""
|
| 368 |
<div class="feature-box">
|
| 369 |
-
<h3
|
| 370 |
-
<table style="width:100%; color:white;">
|
| 371 |
<tr>
|
| 372 |
-
<td
|
| 373 |
-
<td
|
| 374 |
</tr>
|
| 375 |
<tr>
|
| 376 |
-
<td
|
| 377 |
-
<td
|
| 378 |
</tr>
|
| 379 |
<tr>
|
| 380 |
-
<td
|
| 381 |
-
<td>
|
| 382 |
</tr>
|
| 383 |
<tr>
|
| 384 |
-
<td
|
| 385 |
-
<td
|
| 386 |
</tr>
|
| 387 |
</table>
|
| 388 |
-
<div style="margin-top:15px; padding:10px; background:rgba(255,255,255,0.1); border-radius:8px;">
|
| 389 |
-
<strong>💡 Tip:</strong> Use "Manga Recolor" ControlNet for best colorization results on black & white manga/lineart!
|
| 390 |
-
</div>
|
| 391 |
</div>
|
| 392 |
""")
|
| 393 |
|
| 394 |
-
with gr.Row(
|
| 395 |
with gr.Column(scale=1):
|
| 396 |
input_image = gr.Image(
|
| 397 |
-
label="📤
|
| 398 |
type="pil",
|
| 399 |
height=400
|
| 400 |
)
|
| 401 |
|
| 402 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
|
| 404 |
preset = gr.Dropdown(
|
| 405 |
choices=list(RESTORATION_PRESETS.keys()),
|
| 406 |
-
label="เลือกพรีเซ็ต",
|
| 407 |
-
value="
|
| 408 |
-
interactive=True
|
| 409 |
)
|
| 410 |
|
| 411 |
-
|
| 412 |
-
label="💬 Prompt (
|
| 413 |
-
placeholder="Describe the desired anime style...",
|
| 414 |
lines=3,
|
| 415 |
-
value=RESTORATION_PRESETS["
|
| 416 |
)
|
| 417 |
|
| 418 |
-
negative_prompt = gr.Textbox(
|
| 419 |
-
label="🚫 Negative Prompt",
|
| 420 |
-
placeholder="What to avoid...",
|
| 421 |
-
lines=2,
|
| 422 |
-
value="lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry"
|
| 423 |
-
)
|
| 424 |
-
|
| 425 |
-
gr.Markdown("### 🎮 ControlNet Settings")
|
| 426 |
-
|
| 427 |
-
controlnet_type = gr.Dropdown(
|
| 428 |
-
choices=list(CONTROLNET_MODELS.keys()),
|
| 429 |
-
label="🎛️ เลือก ControlNet Type",
|
| 430 |
-
value="Manga Recolor (Recommended)",
|
| 431 |
-
interactive=True,
|
| 432 |
-
info="แนะนำให้ใช้ Manga Recolor สำหรับลงสี"
|
| 433 |
-
)
|
| 434 |
-
|
| 435 |
-
controlnet_strength = gr.Slider(
|
| 436 |
-
label="💪 ControlNet Strength",
|
| 437 |
-
minimum=0.3,
|
| 438 |
-
maximum=2.0,
|
| 439 |
-
step=0.1,
|
| 440 |
-
value=0.8,
|
| 441 |
-
visible=True,
|
| 442 |
-
info="ความแรงของ ControlNet (0.6-1.0 แนะนำ)"
|
| 443 |
-
)
|
| 444 |
-
|
| 445 |
-
gr.HTML("""
|
| 446 |
-
<div class="controlnet-info">
|
| 447 |
-
<strong>📝 แนะนำสำหรับ Anime/Manga:</strong><br><br>
|
| 448 |
-
• <strong>Manga Recolor</strong> - ดีที่สุดสำหรับลงสีมังงะ ⭐<br>
|
| 449 |
-
• ตั้ง Strength = <strong>0.6-1.0</strong> <br>
|
| 450 |
-
• ใช้ prompt ที่บอกสีและบรรยากาศที่ต้องการ<br>
|
| 451 |
-
• Negative prompt ช่วยป้องกันคุณภาพต่ำ
|
| 452 |
-
</div>
|
| 453 |
-
""")
|
| 454 |
-
|
| 455 |
preset.change(
|
| 456 |
fn=load_preset,
|
| 457 |
inputs=[preset],
|
| 458 |
-
outputs=[
|
| 459 |
)
|
| 460 |
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 466 |
|
| 467 |
-
run_button = gr.Button("✨
|
| 468 |
|
| 469 |
-
with gr.Column(scale=
|
| 470 |
with gr.Row():
|
| 471 |
-
|
| 472 |
-
label="
|
| 473 |
-
|
| 474 |
-
height=
|
| 475 |
)
|
| 476 |
-
|
| 477 |
-
label="
|
| 478 |
-
|
| 479 |
-
height=
|
| 480 |
-
visible=True
|
| 481 |
)
|
| 482 |
|
| 483 |
-
with gr.Accordion("⚙️
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
)
|
| 497 |
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
|
| 507 |
steps = gr.Slider(
|
| 508 |
-
label="🔢 Steps",
|
| 509 |
-
minimum=
|
| 510 |
-
maximum=50,
|
| 511 |
-
step=5,
|
| 512 |
-
value=
|
| 513 |
-
info="SDXL แนะนำ 25-40 steps"
|
| 514 |
)
|
| 515 |
-
|
| 516 |
-
gr.Markdown("""
|
| 517 |
-
**💡 การตั้งค่าแนะนำสำหรับ SDXL Anime:**
|
| 518 |
-
- **Steps:** 25-35 (SDXL ต้องการมากกว่า SD1.5)
|
| 519 |
-
- **Guidance:** 7-10 (SDXL ทำงานดีที่ 7.5)
|
| 520 |
-
- **ControlNet Strength:** 0.6-1.0
|
| 521 |
-
- **Resolution:** ระบบจะ resize อัตโนมัติเป็น 1024px
|
| 522 |
-
""")
|
| 523 |
|
| 524 |
run_button.click(
|
| 525 |
fn=restore_photo,
|
| 526 |
-
inputs=[
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
|
|
|
| 530 |
)
|
| 531 |
|
| 532 |
gr.Markdown("""
|
| 533 |
---
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
- **
|
| 539 |
-
- **
|
| 540 |
-
- **
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
✅
|
| 554 |
-
-
|
| 555 |
-
-
|
| 556 |
-
-
|
| 557 |
-
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
-
|
| 562 |
-
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
-
|
| 574 |
-
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
-
|
| 583 |
-
-
|
| 584 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 585 |
|
| 586 |
---
|
| 587 |
|
| 588 |
-
<div style="text-align:center; padding:20px;">
|
| 589 |
-
<strong>🌟
|
| 590 |
-
|
| 591 |
-
<em>
|
| 592 |
</div>
|
| 593 |
""")
|
| 594 |
|
| 595 |
-
|
| 596 |
-
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
|
|
|
|
| 37 |
steel_blue_theme = SteelBlueTheme()
|
| 38 |
|
| 39 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 40 |
+
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 41 |
|
| 42 |
print("=" * 50)
|
| 43 |
+
print("🎨 T2I-Adapter Photo Restoration")
|
| 44 |
print("=" * 50)
|
| 45 |
print("Using device:", device)
|
| 46 |
+
print("Models: SD1.5 + SDXL with T2I-Adapters")
|
| 47 |
print("=" * 50)
|
| 48 |
|
| 49 |
+
from diffusers import (
|
| 50 |
+
StableDiffusionAdapterPipeline,
|
| 51 |
+
T2IAdapter,
|
| 52 |
+
StableDiffusionXLAdapterPipeline,
|
| 53 |
+
AutoencoderKL
|
| 54 |
+
)
|
| 55 |
+
from controlnet_aux import CannyDetector, LineartDetector
|
| 56 |
import gc
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
# Initialize models
|
| 59 |
+
pipe_sd15 = None
|
| 60 |
+
pipe_sdxl = None
|
| 61 |
+
adapter_sd15_canny = None
|
| 62 |
+
adapter_sdxl_canny = None
|
| 63 |
+
canny_detector = CannyDetector()
|
| 64 |
|
|
|
|
| 65 |
try:
|
| 66 |
+
print("🔄 Loading T2I-Adapter for SD1.5 (Canny)...")
|
| 67 |
+
adapter_sd15_canny = T2IAdapter.from_pretrained(
|
| 68 |
+
"TencentARC/t2iadapter_canny_sd15v2",
|
|
|
|
|
|
|
| 69 |
torch_dtype=dtype
|
| 70 |
+
).to(device)
|
| 71 |
|
| 72 |
+
pipe_sd15 = StableDiffusionAdapterPipeline.from_pretrained(
|
| 73 |
+
"runwayml/stable-diffusion-v1-5",
|
| 74 |
+
adapter=adapter_sd15_canny,
|
| 75 |
+
torch_dtype=dtype,
|
| 76 |
+
safety_checker=None
|
| 77 |
+
).to(device)
|
| 78 |
+
|
| 79 |
+
pipe_sd15.enable_attention_slicing()
|
| 80 |
+
print("✅ SD1.5 T2I-Adapter loaded!")
|
| 81 |
+
|
| 82 |
+
except Exception as e:
|
| 83 |
+
print(f"❌ SD1.5 Error: {e}")
|
| 84 |
+
|
| 85 |
+
try:
|
| 86 |
+
print("🔄 Loading T2I-Adapter for SDXL (Canny)...")
|
| 87 |
+
adapter_sdxl_canny = T2IAdapter.from_pretrained(
|
| 88 |
+
"TencentARC/t2i-adapter-canny-sdxl-1.0",
|
| 89 |
+
torch_dtype=dtype,
|
| 90 |
+
varient="fp16"
|
| 91 |
+
).to(device)
|
| 92 |
+
|
| 93 |
+
pipe_sdxl = StableDiffusionXLAdapterPipeline.from_pretrained(
|
| 94 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 95 |
+
adapter=adapter_sdxl_canny,
|
| 96 |
torch_dtype=dtype,
|
|
|
|
| 97 |
variant="fp16"
|
| 98 |
+
).to(device)
|
| 99 |
+
|
| 100 |
+
if device.type == "cuda":
|
| 101 |
+
pipe_sdxl.enable_model_cpu_offload()
|
| 102 |
+
pipe_sdxl.enable_attention_slicing()
|
| 103 |
|
| 104 |
+
print("✅ SDXL T2I-Adapter loaded!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
|
|
|
| 106 |
except Exception as e:
|
| 107 |
+
print(f"❌ SDXL Error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
MAX_SEED = np.iinfo(np.int32).max
|
| 110 |
|
| 111 |
+
# Restoration presets
|
| 112 |
RESTORATION_PRESETS = {
|
| 113 |
+
"ลงสีภาพขาวดำ (Colorize)": "a colorized version of this photograph with realistic natural colors, professional photo restoration, high quality, detailed",
|
| 114 |
+
"ซ่อมแซมเต็มรูปแบบ (Full Restore)": "a fully restored vintage photograph, damage removed, enhanced colors, sharp details, professional restoration, like new",
|
| 115 |
+
"เพิ่มความคมชัด (Enhance)": "a professionally enhanced photograph with improved sharpness, vivid colors, better contrast, high quality",
|
| 116 |
+
"สไตล์วินเทจ (Vintage)": "a beautifully restored vintage photograph with authentic period colors, nostalgic atmosphere",
|
| 117 |
+
"สไตล์อนิเมะ (Anime)": "beautiful anime art style, vibrant colors, detailed anime illustration, high quality artwork",
|
| 118 |
+
"ภาพวาดสีน้ำ (Watercolor)": "watercolor painting style, soft artistic brush strokes, painterly effect",
|
|
|
|
| 119 |
"กำหนดเอง (Custom)": ""
|
| 120 |
}
|
| 121 |
|
| 122 |
+
def get_canny_edge(image, low_threshold=50, high_threshold=150):
|
| 123 |
+
"""Extract canny edges from image"""
|
| 124 |
+
image = np.array(image)
|
| 125 |
+
edges = cv2.Canny(image, low_threshold, high_threshold)
|
| 126 |
+
edges = Image.fromarray(edges)
|
| 127 |
+
return edges
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
def restore_photo(
|
| 130 |
input_image,
|
| 131 |
+
instruction,
|
| 132 |
+
model_choice,
|
|
|
|
|
|
|
| 133 |
seed,
|
| 134 |
randomize_seed,
|
| 135 |
guidance_scale,
|
| 136 |
+
adapter_strength,
|
| 137 |
steps,
|
| 138 |
+
canny_low,
|
| 139 |
+
canny_high,
|
| 140 |
progress=gr.Progress(track_tqdm=True)
|
| 141 |
):
|
| 142 |
+
"""Restore photo using T2I-Adapter"""
|
| 143 |
if input_image is None:
|
| 144 |
raise gr.Error("กรุณาอัพโหลดภาพ")
|
| 145 |
|
| 146 |
+
# Select pipeline
|
| 147 |
+
if model_choice == "SD 1.5" and pipe_sd15 is None:
|
| 148 |
+
raise gr.Error("โมเดล SD1.5 ยังไม่พร้อมใช้งาน")
|
| 149 |
+
elif model_choice == "SDXL" and pipe_sdxl is None:
|
| 150 |
+
raise gr.Error("โมเดล SDXL ยังไม่พร้อมใช้งาน")
|
| 151 |
+
|
| 152 |
+
pipe = pipe_sd15 if model_choice == "SD 1.5" else pipe_sdxl
|
| 153 |
|
| 154 |
if randomize_seed:
|
| 155 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
| 157 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 158 |
original_image = input_image.convert("RGB")
|
| 159 |
|
| 160 |
+
# Resize
|
| 161 |
width, height = original_image.size
|
| 162 |
+
max_size = 768 if model_choice == "SDXL" else 512
|
| 163 |
+
|
| 164 |
+
if width > max_size or height > max_size:
|
| 165 |
+
if width > height:
|
| 166 |
+
new_width = max_size
|
| 167 |
+
new_height = int(height * (max_size / width))
|
| 168 |
+
else:
|
| 169 |
+
new_height = max_size
|
| 170 |
+
new_width = int(width * (max_size / height))
|
| 171 |
+
|
| 172 |
+
new_width = (new_width // 8) * 8
|
| 173 |
+
new_height = (new_height // 8) * 8
|
| 174 |
+
original_image = original_image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
|
| 175 |
|
| 176 |
+
# Extract canny edges
|
| 177 |
+
canny_image = get_canny_edge(original_image, canny_low, canny_high)
|
| 178 |
|
| 179 |
try:
|
| 180 |
+
result = pipe(
|
| 181 |
+
prompt=instruction,
|
| 182 |
+
image=canny_image,
|
| 183 |
+
num_inference_steps=steps,
|
| 184 |
+
guidance_scale=guidance_scale,
|
| 185 |
+
adapter_conditioning_scale=adapter_strength,
|
| 186 |
+
generator=generator,
|
| 187 |
+
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
+
# Clean up
|
| 190 |
+
if device.type == "cuda":
|
| 191 |
+
torch.cuda.empty_cache()
|
| 192 |
+
gc.collect()
|
| 193 |
|
| 194 |
+
return result, canny_image, seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
except Exception as e:
|
|
|
|
|
|
|
|
|
|
| 197 |
raise gr.Error(f"เกิดข้อผิดพลาด: {str(e)}")
|
| 198 |
|
| 199 |
def load_preset(preset_name):
|
| 200 |
"""Load restoration preset"""
|
| 201 |
return RESTORATION_PRESETS.get(preset_name, "")
|
| 202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
css="""
|
| 204 |
#col-container {
|
| 205 |
margin: 0 auto;
|
|
|
|
| 208 |
#main-title h1 {
|
| 209 |
font-size: 2.5em !important;
|
| 210 |
text-align: center;
|
| 211 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 212 |
-webkit-background-clip: text;
|
| 213 |
-webkit-text-fill-color: transparent;
|
| 214 |
background-clip: text;
|
| 215 |
}
|
| 216 |
.feature-box {
|
| 217 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 218 |
color: white;
|
| 219 |
border-radius: 12px;
|
| 220 |
padding: 25px;
|
| 221 |
margin: 20px 0;
|
| 222 |
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
| 223 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
"""
|
| 225 |
|
| 226 |
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 227 |
with gr.Column(elem_id="col-container"):
|
| 228 |
+
gr.Markdown("# 📸 T2I-Adapter Photo Restoration", elem_id="main-title")
|
| 229 |
+
gr.Markdown("### ✨ Control Image Generation with Structure Guidance")
|
| 230 |
|
| 231 |
gr.HTML("""
|
| 232 |
<div class="feature-box">
|
| 233 |
+
<h3>🎯 T2I-Adapter Features</h3>
|
| 234 |
+
<table style="width:100%; color:white; font-size:1.05em;">
|
| 235 |
<tr>
|
| 236 |
+
<td style="padding:8px; width:30%;"><strong>🖼️ Structure Control</strong></td>
|
| 237 |
+
<td>ควบคุมโครงสร้างภาพด้วย Canny Edge Detection</td>
|
| 238 |
</tr>
|
| 239 |
<tr>
|
| 240 |
+
<td style="padding:8px;"><strong>🎨 Style Freedom</strong></td>
|
| 241 |
+
<td>เปลี่ยนสไตล์ได้อย่างอิสระโดยรักษาโครงสร้าง</td>
|
| 242 |
</tr>
|
| 243 |
<tr>
|
| 244 |
+
<td style="padding:8px;"><strong>⚡ Two Models</strong></td>
|
| 245 |
+
<td>SD 1.5 (เร็ว) และ SDXL (คุณภาพสูง)</td>
|
| 246 |
</tr>
|
| 247 |
<tr>
|
| 248 |
+
<td style="padding:8px;"><strong>💎 High Quality</strong></td>
|
| 249 |
+
<td>ผลลัพธ์คุณภาพสูงพร้อมความยืดหยุ่น</td>
|
| 250 |
</tr>
|
| 251 |
</table>
|
|
|
|
|
|
|
|
|
|
| 252 |
</div>
|
| 253 |
""")
|
| 254 |
|
| 255 |
+
with gr.Row():
|
| 256 |
with gr.Column(scale=1):
|
| 257 |
input_image = gr.Image(
|
| 258 |
+
label="📤 อัพโหลดภาพต้นฉบับ",
|
| 259 |
type="pil",
|
| 260 |
height=400
|
| 261 |
)
|
| 262 |
|
| 263 |
+
model_choice = gr.Radio(
|
| 264 |
+
choices=["SD 1.5", "SDXL"],
|
| 265 |
+
label="🤖 เลือกโมเดล",
|
| 266 |
+
value="SD 1.5",
|
| 267 |
+
info="SD 1.5 = เร็ว | SDXL = คุณภาพสูง"
|
| 268 |
+
)
|
| 269 |
|
| 270 |
preset = gr.Dropdown(
|
| 271 |
choices=list(RESTORATION_PRESETS.keys()),
|
| 272 |
+
label="🎯 เลือกพรีเซ็ต",
|
| 273 |
+
value="ลงสีภาพขาวดำ (Colorize)"
|
|
|
|
| 274 |
)
|
| 275 |
|
| 276 |
+
instruction = gr.Textbox(
|
| 277 |
+
label="💬 Prompt (คำอธิบายภาพที่ต้องการ)",
|
|
|
|
| 278 |
lines=3,
|
| 279 |
+
value=RESTORATION_PRESETS["ลงสีภาพขาวดำ (Colorize)"]
|
| 280 |
)
|
| 281 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
preset.change(
|
| 283 |
fn=load_preset,
|
| 284 |
inputs=[preset],
|
| 285 |
+
outputs=[instruction]
|
| 286 |
)
|
| 287 |
|
| 288 |
+
with gr.Accordion("⚙️ Canny Edge Settings", open=False):
|
| 289 |
+
canny_low = gr.Slider(
|
| 290 |
+
label="Low Threshold",
|
| 291 |
+
minimum=0,
|
| 292 |
+
maximum=255,
|
| 293 |
+
value=50,
|
| 294 |
+
step=1
|
| 295 |
+
)
|
| 296 |
+
canny_high = gr.Slider(
|
| 297 |
+
label="High Threshold",
|
| 298 |
+
minimum=0,
|
| 299 |
+
maximum=255,
|
| 300 |
+
value=150,
|
| 301 |
+
step=1
|
| 302 |
+
)
|
| 303 |
|
| 304 |
+
run_button = gr.Button("✨ Generate", variant="primary", size="lg")
|
| 305 |
|
| 306 |
+
with gr.Column(scale=2):
|
| 307 |
with gr.Row():
|
| 308 |
+
canny_output = gr.Image(
|
| 309 |
+
label="🔍 Canny Edge Detection",
|
| 310 |
+
type="pil",
|
| 311 |
+
height=350
|
| 312 |
)
|
| 313 |
+
output_image = gr.Image(
|
| 314 |
+
label="✨ Generated Result",
|
| 315 |
+
type="pil",
|
| 316 |
+
height=350
|
|
|
|
| 317 |
)
|
| 318 |
|
| 319 |
+
with gr.Accordion("⚙️ Advanced Settings", open=True):
|
| 320 |
+
with gr.Row():
|
| 321 |
+
seed = gr.Slider(
|
| 322 |
+
label="🎲 Seed",
|
| 323 |
+
minimum=0,
|
| 324 |
+
maximum=MAX_SEED,
|
| 325 |
+
step=1,
|
| 326 |
+
value=42
|
| 327 |
+
)
|
| 328 |
+
randomize_seed = gr.Checkbox(
|
| 329 |
+
label="🔀 Random Seed",
|
| 330 |
+
value=True
|
| 331 |
+
)
|
|
|
|
| 332 |
|
| 333 |
+
with gr.Row():
|
| 334 |
+
guidance_scale = gr.Slider(
|
| 335 |
+
label="💬 Guidance Scale",
|
| 336 |
+
minimum=1.0,
|
| 337 |
+
maximum=20.0,
|
| 338 |
+
step=0.5,
|
| 339 |
+
value=7.5,
|
| 340 |
+
info="ยิ่งสูง = ทำตาม prompt มากขึ้น"
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
adapter_strength = gr.Slider(
|
| 344 |
+
label="🎨 Adapter Strength",
|
| 345 |
+
minimum=0.0,
|
| 346 |
+
maximum=1.0,
|
| 347 |
+
step=0.05,
|
| 348 |
+
value=0.75,
|
| 349 |
+
info="ยิ่งสูง = รักษาโครงสร้างมากขึ้น"
|
| 350 |
+
)
|
| 351 |
|
| 352 |
steps = gr.Slider(
|
| 353 |
+
label="🔢 Steps",
|
| 354 |
+
minimum=10,
|
| 355 |
+
maximum=50,
|
| 356 |
+
step=5,
|
| 357 |
+
value=25
|
|
|
|
| 358 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
|
| 360 |
run_button.click(
|
| 361 |
fn=restore_photo,
|
| 362 |
+
inputs=[
|
| 363 |
+
input_image, instruction, model_choice, seed, randomize_seed,
|
| 364 |
+
guidance_scale, adapter_strength, steps, canny_low, canny_high
|
| 365 |
+
],
|
| 366 |
+
outputs=[output_image, canny_output, seed]
|
| 367 |
)
|
| 368 |
|
| 369 |
gr.Markdown("""
|
| 370 |
---
|
| 371 |
+
### 📚 คู่มือการใช้งาน T2I-Adapter
|
| 372 |
+
|
| 373 |
+
#### 🎯 **T2I-Adapter คืออะไร?**
|
| 374 |
+
T2I-Adapter เป็นเทคนิคที่ช่วยควบคุมการสร้างภาพด้วย **condition เพิ่มเติม** เช่น:
|
| 375 |
+
- **Canny Edge** - โครงร่างของวัตถุ
|
| 376 |
+
- **Depth Map** - ความลึกของภาพ
|
| 377 |
+
- **Sketch** - ภาพร่าง
|
| 378 |
+
|
| 379 |
+
แอปนี้ใช้ **Canny Edge Detection** เพื่อรักษาโครงสร้างของภาพเดิม แต่เปลี่ยนสไตล์ สี และรายละเอียดตาม prompt
|
| 380 |
+
|
| 381 |
+
#### 🤖 **เลือกโมเดล:**
|
| 382 |
+
|
| 383 |
+
**📘 SD 1.5 (Stable Diffusion 1.5):**
|
| 384 |
+
- ✅ เร็วกว่า (20-40 วินาที)
|
| 385 |
+
- ✅ ใช้ VRAM น้อย (~4-6GB)
|
| 386 |
+
- ✅ เหมาะสำหรับทดลอง
|
| 387 |
+
- ⚠️ คุณภาพต่ำกว่า SDXL
|
| 388 |
+
|
| 389 |
+
**📗 SDXL (Stable Diffusion XL):**
|
| 390 |
+
- ✅ คุณภาพสูงกว่ามาก
|
| 391 |
+
- ✅ รายละเอียดดีกว่า
|
| 392 |
+
- ✅ สีสันสมจริงกว่า
|
| 393 |
+
- ⚠️ ช้ากว่า (60-120 วินาที)
|
| 394 |
+
- ⚠️ ใช้ VRAM มาก (~8-12GB)
|
| 395 |
+
|
| 396 |
+
#### 🎯 **วิธีใช้งาน:**
|
| 397 |
+
|
| 398 |
+
1. **อัพโหลดภาพ** - ภาพถ่ายเก่า หรือภาพที่ต้องการแปลง
|
| 399 |
+
2. **เลือกโมเดล** - SD 1.5 (เร็ว) หรือ SDXL (คุณภาพสูง)
|
| 400 |
+
3. **เลือกพรีเซ็ต** - เลือกสไตล์ที่ต้องการ
|
| 401 |
+
4. **แก้ไข Prompt** - ปรับแต่งคำอธิบายตามต้องการ
|
| 402 |
+
5. **กด Generate** - รอผลลัพธ์
|
| 403 |
+
6. **ดู Canny Edge** - ตรวจสอบว่าโครงสร้างถูกต้อง
|
| 404 |
+
7. **ปรับค่า Adapter Strength** - ถ้าต้องการเปลี่ยนมากขึ้น/น้อยลง
|
| 405 |
+
|
| 406 |
+
#### 💡 **เคล็ดลับ:**
|
| 407 |
+
|
| 408 |
+
✅ **สำหรับภาพขาวดำ:**
|
| 409 |
+
- Adapter Strength: 0.7-0.8
|
| 410 |
+
- Guidance: 7-9
|
| 411 |
+
- Prompt: "colorized vintage photograph with realistic colors"
|
| 412 |
+
|
| 413 |
+
✅ **สำหรับการเปลี่ยนสไตล์:**
|
| 414 |
+
- Adapter Strength: 0.6-0.75
|
| 415 |
+
- Guidance: 8-12
|
| 416 |
+
- Prompt: "anime art style" / "watercolor painting"
|
| 417 |
+
|
| 418 |
+
✅ **สำหรับการซ่อมแซม:**
|
| 419 |
+
- Adapter Strength: 0.8-0.9 (รักษาโครงสร้างเดิมมาก)
|
| 420 |
+
- Guidance: 7-9
|
| 421 |
+
- Prompt: "restored photograph, enhanced colors"
|
| 422 |
+
|
| 423 |
+
✅ **Canny Edge Settings:**
|
| 424 |
+
- **Low/High Threshold:** ปรับเพื่อควบคุมรายละเอียดของ edge
|
| 425 |
+
- **Low = 50, High = 150** เหมาะสำหรับภาพทั่วไป
|
| 426 |
+
- **Low = 30, High = 100** สำหรับภาพที่มีรายละเอียดน้อย
|
| 427 |
+
- **Low = 100, High = 200** สำหรับภาพที่มีรายละเอียดเยอะ
|
| 428 |
+
|
| 429 |
+
#### ⚙️ **พารามิเตอร์:**
|
| 430 |
+
|
| 431 |
+
**Guidance Scale (1-20):**
|
| 432 |
+
- 5-7: สร้างสรรค์มาก, อิสระ
|
| 433 |
+
- 7-10: สมดุล ✅
|
| 434 |
+
- 10-15: ทำตาม prompt เยอะมาก
|
| 435 |
+
|
| 436 |
+
**Adapter Strength (0-1):**
|
| 437 |
+
- 0.5-0.6: เปลี่ยนแปลงมาก, อิสระ
|
| 438 |
+
- 0.7-0.8: สมดุล ✅
|
| 439 |
+
- 0.85-1.0: รักษาโครงสร้างเดิมเกือบทั้งหมด
|
| 440 |
+
|
| 441 |
+
**Steps:**
|
| 442 |
+
- SD 1.5: 20-30 steps
|
| 443 |
+
- SDXL: 25-40 steps
|
| 444 |
+
|
| 445 |
+
#### ⚡ **ประสิทธิภาพ:**
|
| 446 |
+
|
| 447 |
+
**SD 1.5:**
|
| 448 |
+
- เวลา: 20-40 วินาที
|
| 449 |
+
- VRAM: 4-6GB
|
| 450 |
+
- ความละเอียด: 512x512px
|
| 451 |
+
|
| 452 |
+
**SDXL:**
|
| 453 |
+
- เวลา: 60-120 วินาที
|
| 454 |
+
- VRAM: 8-12GB
|
| 455 |
+
- ความละเอียด: 768x768px หรือ 1024x1024px
|
| 456 |
+
|
| 457 |
+
#### 📦 **Dependencies:**
|
| 458 |
+
```bash
|
| 459 |
+
pip install diffusers transformers
|
| 460 |
+
pip install controlnet-aux
|
| 461 |
+
pip install opencv-python
|
| 462 |
+
pip install torch torchvision
|
| 463 |
+
pip install gradio
|
| 464 |
+
```
|
| 465 |
|
| 466 |
---
|
| 467 |
|
| 468 |
+
<div style="text-align:center; color:#666; padding:20px;">
|
| 469 |
+
<strong>🌟 T2I-Adapter</strong><br>
|
| 470 |
+
Structure-Guided Image Generation<br>
|
| 471 |
+
<em>TencentARC • Stable Diffusion</em>
|
| 472 |
</div>
|
| 473 |
""")
|
| 474 |
|
| 475 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
|
|
|