QA-DeBERTa-v3-large-qa_bi_cross_attn_cls-binary
This model is a fine-tuned version of microsoft/deberta-v3-large on the saiteki-kai/Beavertails-it dataset. It achieves the following results on the evaluation set:
- Loss: 0.3202
- Accuracy: 0.8617
- Unsafe Precision: 0.8690
- Unsafe Recall: 0.8848
- Unsafe F1: 0.8769
- Unsafe Fpr: 0.1673
- Unsafe Aucpr: 0.9555
- Safe Precision: 0.8521
- Safe Recall: 0.8327
- Safe F1: 0.8423
- Safe Fpr: 0.1152
- Safe Aucpr: 0.9212
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-06
- train_batch_size: 64
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Unsafe Precision | Unsafe Recall | Unsafe F1 | Unsafe Fpr | Unsafe Aucpr | Safe Precision | Safe Recall | Safe F1 | Safe Fpr | Safe Aucpr |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.3088 | 0.2501 | 2114 | 0.3633 | 0.8474 | 0.8856 | 0.8334 | 0.8587 | 0.1351 | 0.9413 | 0.8054 | 0.8649 | 0.8341 | 0.1666 | 0.8880 |
| 0.3276 | 0.5001 | 4228 | 0.3342 | 0.8548 | 0.8646 | 0.8764 | 0.8705 | 0.1722 | 0.9483 | 0.8422 | 0.8278 | 0.8349 | 0.1236 | 0.9065 |
| 0.3059 | 0.7502 | 6342 | 0.3256 | 0.8578 | 0.8966 | 0.8416 | 0.8682 | 0.1218 | 0.9514 | 0.8155 | 0.8782 | 0.8457 | 0.1584 | 0.9119 |
| 0.3413 | 1.0002 | 8456 | 0.3251 | 0.8586 | 0.8651 | 0.8837 | 0.8743 | 0.1729 | 0.9525 | 0.8501 | 0.8271 | 0.8384 | 0.1163 | 0.9136 |
| 0.3035 | 1.2503 | 10570 | 0.3247 | 0.8611 | 0.8775 | 0.8721 | 0.8748 | 0.1528 | 0.9529 | 0.8408 | 0.8472 | 0.8440 | 0.1279 | 0.9160 |
| 0.2828 | 1.5004 | 12684 | 0.3307 | 0.8614 | 0.8721 | 0.8800 | 0.8760 | 0.1620 | 0.9539 | 0.8477 | 0.8380 | 0.8428 | 0.1200 | 0.9178 |
| 0.2864 | 1.7504 | 14798 | 0.3233 | 0.8623 | 0.8758 | 0.8769 | 0.8763 | 0.1560 | 0.9548 | 0.8453 | 0.8440 | 0.8446 | 0.1231 | 0.9185 |
| 0.3083 | 2.0005 | 16912 | 0.3236 | 0.8627 | 0.8966 | 0.8516 | 0.8735 | 0.1232 | 0.9551 | 0.8248 | 0.8768 | 0.8500 | 0.1484 | 0.9140 |
| 0.3109 | 2.2505 | 19026 | 0.3227 | 0.8596 | 0.8737 | 0.8742 | 0.8739 | 0.1586 | 0.9539 | 0.8420 | 0.8414 | 0.8417 | 0.1258 | 0.9199 |
| 0.2648 | 2.5006 | 21140 | 0.3256 | 0.8614 | 0.8694 | 0.8838 | 0.8765 | 0.1666 | 0.9547 | 0.8511 | 0.8334 | 0.8422 | 0.1162 | 0.9196 |
| 0.2712 | 2.7507 | 23254 | 0.3202 | 0.8617 | 0.8690 | 0.8848 | 0.8769 | 0.1673 | 0.9555 | 0.8521 | 0.8327 | 0.8423 | 0.1152 | 0.9212 |
| 0.2809 | 3.0007 | 25368 | 0.3266 | 0.8614 | 0.8803 | 0.8691 | 0.8746 | 0.1483 | 0.9555 | 0.8383 | 0.8517 | 0.8450 | 0.1309 | 0.9220 |
| 0.2753 | 3.2508 | 27482 | 0.3326 | 0.8600 | 0.8818 | 0.8643 | 0.8729 | 0.1454 | 0.9546 | 0.8339 | 0.8546 | 0.8441 | 0.1357 | 0.9181 |
| 0.2408 | 3.5008 | 29596 | 0.3384 | 0.8596 | 0.8812 | 0.8642 | 0.8726 | 0.1462 | 0.9544 | 0.8337 | 0.8538 | 0.8436 | 0.1358 | 0.9177 |
| 0.2915 | 3.7509 | 31710 | 0.3398 | 0.8589 | 0.8959 | 0.8446 | 0.8695 | 0.1232 | 0.9548 | 0.8181 | 0.8768 | 0.8465 | 0.1554 | 0.9186 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.7.1+cu118
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 71
Model tree for saiteki-kai/QA-DeBERTa-v3-large-qa_bi_cross_attn_cls-binary
Base model
microsoft/deberta-v3-largeEvaluation results
- Accuracy on saiteki-kai/Beavertails-itself-reported0.862