mental-roberta-large-tqacd
This model is a fine-tuned version of AIMH/mental-roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 5.1025
- F1 Macro: 0.2135
- Precision: 0.2435
- Recall: 0.2081
- Accuracy: 0.3960
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | Precision | Recall | Accuracy |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 114 | 2.3883 | 0.0709 | 0.0731 | 0.1136 | 0.1683 |
| No log | 2.0 | 228 | 2.2740 | 0.1730 | 0.1903 | 0.2120 | 0.2921 |
| No log | 3.0 | 342 | 2.1808 | 0.2186 | 0.2406 | 0.2767 | 0.2723 |
| No log | 4.0 | 456 | 2.1832 | 0.2306 | 0.2621 | 0.2427 | 0.3069 |
| 2.0598 | 5.0 | 570 | 2.4082 | 0.2319 | 0.2299 | 0.2796 | 0.3218 |
| 2.0598 | 6.0 | 684 | 2.6410 | 0.2590 | 0.2524 | 0.2830 | 0.3812 |
| 2.0598 | 7.0 | 798 | 3.2373 | 0.2529 | 0.2765 | 0.2467 | 0.3861 |
| 2.0598 | 8.0 | 912 | 3.5088 | 0.2629 | 0.2753 | 0.2573 | 0.3911 |
| 0.2954 | 9.0 | 1026 | 4.4566 | 0.2175 | 0.2695 | 0.2074 | 0.3812 |
| 0.2954 | 10.0 | 1140 | 5.1025 | 0.2135 | 0.2435 | 0.2081 | 0.3960 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 4
Model tree for rendchevi/mental-roberta-large-tqacd
Base model
AIMH/mental-roberta-large