TrOCR: Optimized for Mobile Deployment
Transformer based model for state-of-the-art optical character recognition (OCR) on both printed and handwritten text
End-to-end text recognition approach with pre-trained image transformer and text transformer models for both image understanding and wordpiece-level text generation.
This model is an implementation of TrOCR found here.
This repository provides scripts to run TrOCR on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.image_to_text
- Model Stats:
- Model checkpoint: trocr-small-stage1
- Input resolution: 320x320
- Number of parameters (TrOCRDecoder): 38.3M
- Model size (TrOCRDecoder) (float): 146 MB
- Number of parameters (TrOCREncoder): 23.0M
- Model size (TrOCREncoder) (float): 87.8 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| TrOCRDecoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 4.155 ms | 0 - 222 MB | NPU | TrOCR.tflite |
| TrOCRDecoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 4.189 ms | 0 - 213 MB | NPU | TrOCR.dlc |
| TrOCRDecoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 2.814 ms | 0 - 296 MB | NPU | TrOCR.tflite |
| TrOCRDecoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.832 ms | 1 - 292 MB | NPU | TrOCR.dlc |
| TrOCRDecoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.02 ms | 0 - 3 MB | NPU | TrOCR.tflite |
| TrOCRDecoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.927 ms | 2 - 4 MB | NPU | TrOCR.dlc |
| TrOCRDecoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 2.499 ms | 1 - 4 MB | NPU | TrOCR.onnx.zip |
| TrOCRDecoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 2.881 ms | 0 - 219 MB | NPU | TrOCR.tflite |
| TrOCRDecoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2.796 ms | 7 - 217 MB | NPU | TrOCR.dlc |
| TrOCRDecoder | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 4.155 ms | 0 - 222 MB | NPU | TrOCR.tflite |
| TrOCRDecoder | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 4.189 ms | 0 - 213 MB | NPU | TrOCR.dlc |
| TrOCRDecoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.035 ms | 0 - 3 MB | NPU | TrOCR.tflite |
| TrOCRDecoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.947 ms | 2 - 5 MB | NPU | TrOCR.dlc |
| TrOCRDecoder | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.817 ms | 0 - 207 MB | NPU | TrOCR.tflite |
| TrOCRDecoder | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.817 ms | 6 - 207 MB | NPU | TrOCR.dlc |
| TrOCRDecoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.013 ms | 0 - 3 MB | NPU | TrOCR.tflite |
| TrOCRDecoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.932 ms | 1 - 3 MB | NPU | TrOCR.dlc |
| TrOCRDecoder | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 2.881 ms | 0 - 219 MB | NPU | TrOCR.tflite |
| TrOCRDecoder | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2.796 ms | 7 - 217 MB | NPU | TrOCR.dlc |
| TrOCRDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.407 ms | 0 - 319 MB | NPU | TrOCR.tflite |
| TrOCRDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.415 ms | 0 - 311 MB | NPU | TrOCR.dlc |
| TrOCRDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 1.765 ms | 0 - 290 MB | NPU | TrOCR.onnx.zip |
| TrOCRDecoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 1.157 ms | 0 - 303 MB | NPU | TrOCR.tflite |
| TrOCRDecoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1.156 ms | 0 - 294 MB | NPU | TrOCR.dlc |
| TrOCRDecoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 1.512 ms | 0 - 268 MB | NPU | TrOCR.onnx.zip |
| TrOCRDecoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 1.099 ms | 0 - 282 MB | NPU | TrOCR.tflite |
| TrOCRDecoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 1.11 ms | 2 - 279 MB | NPU | TrOCR.dlc |
| TrOCRDecoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 1.378 ms | 2 - 259 MB | NPU | TrOCR.onnx.zip |
| TrOCRDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.174 ms | 7 - 7 MB | NPU | TrOCR.dlc |
| TrOCRDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.265 ms | 68 - 68 MB | NPU | TrOCR.onnx.zip |
| TrOCREncoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 38.054 ms | 7 - 252 MB | NPU | TrOCR.tflite |
| TrOCREncoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 45.721 ms | 2 - 260 MB | NPU | TrOCR.dlc |
| TrOCREncoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 21.572 ms | 7 - 349 MB | NPU | TrOCR.tflite |
| TrOCREncoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 28.194 ms | 2 - 356 MB | NPU | TrOCR.dlc |
| TrOCREncoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 12.106 ms | 7 - 9 MB | NPU | TrOCR.tflite |
| TrOCREncoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 16.659 ms | 2 - 4 MB | NPU | TrOCR.dlc |
| TrOCREncoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 17.607 ms | 0 - 58 MB | NPU | TrOCR.onnx.zip |
| TrOCREncoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 14.633 ms | 7 - 252 MB | NPU | TrOCR.tflite |
| TrOCREncoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 19.802 ms | 2 - 263 MB | NPU | TrOCR.dlc |
| TrOCREncoder | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 38.054 ms | 7 - 252 MB | NPU | TrOCR.tflite |
| TrOCREncoder | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 45.721 ms | 2 - 260 MB | NPU | TrOCR.dlc |
| TrOCREncoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 12.102 ms | 7 - 10 MB | NPU | TrOCR.tflite |
| TrOCREncoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 16.77 ms | 2 - 4 MB | NPU | TrOCR.dlc |
| TrOCREncoder | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 20.681 ms | 5 - 256 MB | NPU | TrOCR.tflite |
| TrOCREncoder | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 25.815 ms | 2 - 262 MB | NPU | TrOCR.dlc |
| TrOCREncoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 12.098 ms | 7 - 9 MB | NPU | TrOCR.tflite |
| TrOCREncoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 16.769 ms | 2 - 4 MB | NPU | TrOCR.dlc |
| TrOCREncoder | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 14.633 ms | 7 - 252 MB | NPU | TrOCR.tflite |
| TrOCREncoder | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 19.802 ms | 2 - 263 MB | NPU | TrOCR.dlc |
| TrOCREncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 8.523 ms | 6 - 343 MB | NPU | TrOCR.tflite |
| TrOCREncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 11.519 ms | 2 - 356 MB | NPU | TrOCR.dlc |
| TrOCREncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 11.547 ms | 16 - 390 MB | NPU | TrOCR.onnx.zip |
| TrOCREncoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 5.789 ms | 6 - 253 MB | NPU | TrOCR.tflite |
| TrOCREncoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 9.302 ms | 2 - 287 MB | NPU | TrOCR.dlc |
| TrOCREncoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 10.061 ms | 16 - 279 MB | NPU | TrOCR.onnx.zip |
| TrOCREncoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 4.642 ms | 0 - 250 MB | NPU | TrOCR.tflite |
| TrOCREncoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 6.944 ms | 2 - 265 MB | NPU | TrOCR.dlc |
| TrOCREncoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 7.25 ms | 16 - 259 MB | NPU | TrOCR.onnx.zip |
| TrOCREncoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 17.633 ms | 2 - 2 MB | NPU | TrOCR.dlc |
| TrOCREncoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 17.988 ms | 48 - 48 MB | NPU | TrOCR.onnx.zip |
Installation
Install the package via pip:
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[trocr]"
Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub Workbench with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.trocr.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.trocr.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.trocr.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.trocr import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on TrOCR's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of TrOCR can be found here.
References
- TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 515
