BEVDet: Optimized for Qualcomm Devices

BEVDet is a machine learning model for generating a birds eye view represenation from the sensors(cameras) mounted on a vehicle.

This is based on the implementation of BEVDet found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.

Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.

Getting Started

There are two ways to deploy this model on your device:

Option 1: Download Pre-Exported Models

Below are pre-exported model assets ready for deployment.

Runtime Precision Chipset SDK Versions Download
ONNX float Universal ONNX Runtime 1.23.0 Download
ONNX w8a16_mixed_fp16 Universal ONNX Runtime 1.23.0 Download
TFLITE float Universal TFLite 2.17.0 Download

For more device-specific assets and performance metrics, visit BEVDet on Qualcomm® AI Hub.

Option 2: Export with Custom Configurations

Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:

  • Custom weights (e.g., fine-tuned checkpoints)
  • Custom input shapes
  • Target device and runtime configurations

This option is ideal if you need to customize the model beyond the default configuration provided here.

See our repository for BEVDet on GitHub for usage instructions.

Model Details

Model Type: Model_use_case.driver_assistance

Model Stats:

  • Model checkpoint: bevdet-r50.pth
  • Input resolution: 1 x 6 x 3 x 256 x 704
  • Number of parameters: 44M
  • Model size: 171 MB

Performance Summary

Model Runtime Precision Chipset Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit
BEVDet ONNX float Snapdragon® X Elite 680.081 ms 600 - 600 MB CPU
BEVDet ONNX float Snapdragon® 8 Gen 3 Mobile 2323.529 ms 278 - 288 MB CPU
BEVDet ONNX float Qualcomm® QCS8550 (Proxy) 2565.452 ms 274 - 281 MB CPU
BEVDet ONNX float Qualcomm® QCS9075 1536.227 ms 304 - 320 MB CPU
BEVDet ONNX float Snapdragon® 8 Elite For Galaxy Mobile 1625.923 ms 275 - 287 MB CPU
BEVDet ONNX float Snapdragon® 8 Elite Gen 5 Mobile 1681.251 ms 299 - 310 MB CPU
BEVDet ONNX w8a16_mixed_fp16 Snapdragon® X Elite 805.09 ms 1105 - 1105 MB CPU
BEVDet ONNX w8a16_mixed_fp16 Snapdragon® 8 Gen 3 Mobile 2317.188 ms 258 - 273 MB CPU
BEVDet ONNX w8a16_mixed_fp16 Qualcomm® QCS8550 (Proxy) 2662.588 ms 311 - 325 MB CPU
BEVDet ONNX w8a16_mixed_fp16 Qualcomm® QCS9075 1750.335 ms 338 - 354 MB CPU
BEVDet ONNX w8a16_mixed_fp16 Snapdragon® 8 Elite For Galaxy Mobile 1711.346 ms 319 - 329 MB CPU
BEVDet ONNX w8a16_mixed_fp16 Snapdragon® 8 Elite Gen 5 Mobile 1831.786 ms 314 - 327 MB CPU
BEVDet TFLITE float Snapdragon® 8 Gen 3 Mobile 1670.163 ms 123 - 139 MB CPU
BEVDet TFLITE float Qualcomm® QCS8275 (Proxy) 3149.836 ms 129 - 139 MB CPU
BEVDet TFLITE float Qualcomm® QCS8550 (Proxy) 1927.239 ms 103 - 105 MB CPU
BEVDet TFLITE float Qualcomm® SA8775P 2522.77 ms 128 - 139 MB CPU
BEVDet TFLITE float Qualcomm® QCS9075 2425.619 ms 126 - 1473 MB CPU
BEVDet TFLITE float Qualcomm® QCS8450 (Proxy) 2671.358 ms 129 - 149 MB CPU
BEVDet TFLITE float Qualcomm® SA7255P 3149.836 ms 129 - 139 MB CPU
BEVDet TFLITE float Qualcomm® SA8295P 2008.213 ms 87 - 95 MB CPU
BEVDet TFLITE float Snapdragon® 8 Elite For Galaxy Mobile 1256.893 ms 75 - 85 MB CPU
BEVDet TFLITE float Snapdragon® 8 Elite Gen 5 Mobile 1069.57 ms 89 - 100 MB CPU

License

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for qualcomm/BEVDet