BEVDet: Optimized for Qualcomm Devices
BEVDet is a machine learning model for generating a birds eye view represenation from the sensors(cameras) mounted on a vehicle.
This is based on the implementation of BEVDet found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.
Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.
Getting Started
There are two ways to deploy this model on your device:
Option 1: Download Pre-Exported Models
Below are pre-exported model assets ready for deployment.
| Runtime | Precision | Chipset | SDK Versions | Download |
|---|---|---|---|---|
| ONNX | float | Universal | ONNX Runtime 1.23.0 | Download |
| ONNX | w8a16_mixed_fp16 | Universal | ONNX Runtime 1.23.0 | Download |
| TFLITE | float | Universal | TFLite 2.17.0 | Download |
For more device-specific assets and performance metrics, visit BEVDet on Qualcomm® AI Hub.
Option 2: Export with Custom Configurations
Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:
- Custom weights (e.g., fine-tuned checkpoints)
- Custom input shapes
- Target device and runtime configurations
This option is ideal if you need to customize the model beyond the default configuration provided here.
See our repository for BEVDet on GitHub for usage instructions.
Model Details
Model Type: Model_use_case.driver_assistance
Model Stats:
- Model checkpoint: bevdet-r50.pth
- Input resolution: 1 x 6 x 3 x 256 x 704
- Number of parameters: 44M
- Model size: 171 MB
Performance Summary
| Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit |
|---|---|---|---|---|---|---|
| BEVDet | ONNX | float | Snapdragon® X Elite | 680.081 ms | 600 - 600 MB | CPU |
| BEVDet | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 2323.529 ms | 278 - 288 MB | CPU |
| BEVDet | ONNX | float | Qualcomm® QCS8550 (Proxy) | 2565.452 ms | 274 - 281 MB | CPU |
| BEVDet | ONNX | float | Qualcomm® QCS9075 | 1536.227 ms | 304 - 320 MB | CPU |
| BEVDet | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 1625.923 ms | 275 - 287 MB | CPU |
| BEVDet | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 1681.251 ms | 299 - 310 MB | CPU |
| BEVDet | ONNX | w8a16_mixed_fp16 | Snapdragon® X Elite | 805.09 ms | 1105 - 1105 MB | CPU |
| BEVDet | ONNX | w8a16_mixed_fp16 | Snapdragon® 8 Gen 3 Mobile | 2317.188 ms | 258 - 273 MB | CPU |
| BEVDet | ONNX | w8a16_mixed_fp16 | Qualcomm® QCS8550 (Proxy) | 2662.588 ms | 311 - 325 MB | CPU |
| BEVDet | ONNX | w8a16_mixed_fp16 | Qualcomm® QCS9075 | 1750.335 ms | 338 - 354 MB | CPU |
| BEVDet | ONNX | w8a16_mixed_fp16 | Snapdragon® 8 Elite For Galaxy Mobile | 1711.346 ms | 319 - 329 MB | CPU |
| BEVDet | ONNX | w8a16_mixed_fp16 | Snapdragon® 8 Elite Gen 5 Mobile | 1831.786 ms | 314 - 327 MB | CPU |
| BEVDet | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 1670.163 ms | 123 - 139 MB | CPU |
| BEVDet | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 3149.836 ms | 129 - 139 MB | CPU |
| BEVDet | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 1927.239 ms | 103 - 105 MB | CPU |
| BEVDet | TFLITE | float | Qualcomm® SA8775P | 2522.77 ms | 128 - 139 MB | CPU |
| BEVDet | TFLITE | float | Qualcomm® QCS9075 | 2425.619 ms | 126 - 1473 MB | CPU |
| BEVDet | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 2671.358 ms | 129 - 149 MB | CPU |
| BEVDet | TFLITE | float | Qualcomm® SA7255P | 3149.836 ms | 129 - 139 MB | CPU |
| BEVDet | TFLITE | float | Qualcomm® SA8295P | 2008.213 ms | 87 - 95 MB | CPU |
| BEVDet | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 1256.893 ms | 75 - 85 MB | CPU |
| BEVDet | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 1069.57 ms | 89 - 100 MB | CPU |
License
- The license for the original implementation of BEVDet can be found [here](https://github.com/HuangJunJie2017/BEVDet/blob/dev3.0/LICENSE https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
References
- BEVDet: High-Performance Multi-Camera 3D Object Detection in Bird-Eye-View
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
