samsum_42
This model is a fine-tuned version of google/t5-v1_1-large on the samsum dataset. It achieves the following results on the evaluation set:
- Loss: 58.3901
- Rouge1: 0.2039
- Rouge2: 0.0
- Rougel: 0.2027
- Rougelsum: 0.206
- Gen Len: 127.0
- Test Rougel: 0.2027
- Df Rougel: 0.2084
- Unlearn Overall Rougel: 0.4971
- Unlearn Time: 14167.7583
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.25
Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Overall Rougel | Unlearn Overall Rougel | Time |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 1.0 | 432 | 58.7248 | 0.249 | 0.0 | 0.2984 | 0.2535 | 127.0 | 0.4759 | 0.4759 | -1 |
| No log | 1.25 | 540 | 58.3901 | 0.2039 | 0.0 | 0.2084 | 0.206 | 127.0 | 0.4971 | 0.4971 | -1 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for jialicheng/unlearn_samsum_t5-large_scrub_6_42
Base model
google/t5-v1_1-largeEvaluation results
- Rouge1 on samsumself-reported0.204