Rethinking Augmentation: Experiment Results

小样本增强策略再思考:实验结果库

Official experiment results repository for the paper:
"When More is Not Better: Rethinking Data Augmentation under Small-Sample Regimes"

TL;DR: We find that in small-sample regimes (e.g., CIFAR-100 100-shot), complex augmentation strategies (like RandAugment) often yield diminishing returns and high instability. A single, well-tuned operation can achieve comparable accuracy with significantly lower variance.

核心发现:在小样本场景下,盲目增加数据增强的复杂度(如 RandAugment)往往收益递减且带来极大的不稳定性。我们发现,单一且经过调优的增强操作能在保持精度的同时显著降低方差。


📊 Key Findings / 核心发现

1. Stability-Accuracy Trade-off / 稳定性与精度的权衡 (CIFAR-100 100-shot)

Policy / 策略 Val Acc (%) Stability (Std) Note
RandAugment (N=2,M=9) 42.24% 1.17 High Variance (Unstable)
Single-Op (Ours) 40.74% 0.78 (Lowest) Stable & Reliable
Baseline 39.90% 1.01 -

2. Zero-Variance Generalization / 零方差泛化 (CIFAR-10 50-shot)

Metric / 指标 Result / 结果
Top-1 Accuracy 50.0%
Stability (Std) 0.0 (Zero Variance across 3 seeds)

📂 Repository Structure / 仓库结构

  • checkpoints/: PyTorch model weights (best_model.pth). / 官方模型权重。
  • figures/: Paper visualizations (Heatmaps, Trade-off plots). / 论文可视化图表(热图、权衡对比图等)。
  • phase_c_final_policy.json: The discovered optimal single-operation policy. / 搜索出的最优单一增强策略。
  • cifar10_50shot_results.csv: CIFAR-10 generalization experiment data. / CIFAR-10 泛化实验数据。
  • stability_seeds_results.csv: Raw data verifying the stability claim. / 验证“稳定性”结论的原始数据。
  • destructiveness_metrics.csv: LPIPS/SSIM analysis for semantic preservation. / 语义保真度分析数据。

📜 Citation / 引用

If you find this study useful, please cite our work: 如果您觉得这项研究对您有启发,请引用我们的工作:

(Citation will be updated upon acceptance / 论文接收后更新)


🔗 Links / 相关链接

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Datasets used to train imnotnoahhh/Rethinking-Augmentation