DocCornerDataset / README.md
mapo80's picture
Upload folder using huggingface_hub
2f6d2d1 verified
metadata
dataset_info:
  features:
    - name: image
      dtype: image
    - name: filename
      dtype: string
    - name: is_negative
      dtype: bool
    - name: corner_tl_x
      dtype: float32
    - name: corner_tl_y
      dtype: float32
    - name: corner_tr_x
      dtype: float32
    - name: corner_tr_y
      dtype: float32
    - name: corner_br_x
      dtype: float32
    - name: corner_br_y
      dtype: float32
    - name: corner_bl_x
      dtype: float32
    - name: corner_bl_y
      dtype: float32
  splits:
    - name: train
      num_examples: 32968
    - name: validation
      num_examples: 8645
    - name: test
      num_examples: 6652
configs:
  - config_name: default
    data_files:
      - split: train
        path: train/*.parquet
      - split: validation
        path: val/*.parquet
      - split: test
        path: test/*.parquet
license: other
task_categories:
  - image-segmentation
  - keypoint-detection
  - object-detection
tags:
  - document-detection
  - corner-detection
  - perspective-correction
  - document-scanner
  - keypoint-regression
language:
  - en
size_categories:
  - 10K<n<100K

DocCornerDataset

A high-quality document corner detection dataset for training models to detect the four corners of documents in images. This dataset is optimized for building robust document scanning and perspective correction applications.

Dataset Examples

Training Set

Training samples

Validation Set

Validation samples

Test Set

Test samples

Green polygons show the annotated document corners

Dataset Description

This dataset contains images with document corner annotations, optimized for training robust document detection models. It uses the best-performing splits from an iterative dataset cleaning process with multiple quality validation steps.

Key Features

  • High Quality Annotations: Labels refined through iterative cleaning with multiple teacher models
  • Diverse Document Types: IDs, invoices, receipts, books, cards, and general documents
  • Negative Samples: Includes images without documents for training robust classifiers
  • No Overlap: Train, validation, and test splits are completely disjoint

Dataset Statistics

Split Images Description
train 32,968 Training set (cleaned iter3 + hard negatives)
validation 8,645 Validation set (cleaned iter3)
test 6,652 Held-out test set (no overlap with train/val)
Total 48,265

Data Sources and Licenses

This dataset is compiled from multiple open-source datasets. Please refer to the original dataset licenses before using this data.

MIDV Dataset (ID Cards)

Mobile Identity Document Video dataset for identity document detection and recognition.

Dataset Images License Source
MIDV-500 ~9,400 Research use Website
MIDV-2019 ~1,350 Research use Website

Citation:

@article{arlazarov2019midv500,
  title={MIDV-500: A Dataset for Identity Documents Analysis and Recognition on Mobile Devices in Video Stream},
  author={Arlazarov, V.V. and Bulatov, K. and Chernov, T. and Arlazarov, V.L.},
  journal={Computer Optics},
  volume={43},
  number={5},
  pages={818--824},
  year={2019}
}

@inproceedings{arlazarov2019midv2019,
  title={MIDV-2019: Challenges of the modern mobile-based document OCR},
  author={Arlazarov, V.V. and Bulatov, K. and Chernov, T. and Arlazarov, V.L.},
  booktitle={ICDAR},
  year={2019}
}

SmartDoc Dataset (Documents)

SmartDoc Challenge dataset for document image acquisition and quality assessment.

Dataset Images License Source
SmartDoc ~1,380 Research use Website

Citation:

@inproceedings{burie2015smartdoc,
  title={ICDAR 2015 Competition on Smartphone Document Capture and OCR (SmartDoc)},
  author={Burie, J.C. and Chazalon, J. and Coustaty, M. and others},
  booktitle={ICDAR},
  year={2015}
}

COCO Dataset (Negative Samples)

Common Objects in Context dataset used for negative samples (images without documents).

Dataset Images License Source
COCO val2017 ~4,300 CC BY 4.0 Website
COCO train2017 ~11,400 CC BY 4.0 Website

Note: Excluded categories that could be confused with documents: book, laptop, tv, cell phone, keyboard, mouse, remote, clock.

Citation:

@inproceedings{lin2014coco,
  title={Microsoft COCO: Common Objects in Context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and others},
  booktitle={ECCV},
  year={2014}
}

Roboflow Universe (Various Documents)

Various document datasets from Roboflow Universe community.

Category Datasets License Source
Documents document_segmentation_v2, doc_scanner, doc_rida, documento Various (check individual) Roboflow Universe
Bills/Invoices bill_segmentation, cs_invoice Various (check individual) Roboflow Universe
Receipts receipt_detection, receipt_occam, receipts_coolstuff Various (check individual) Roboflow Universe
ID Cards card_corner, card_4_class, id_card_skew, id_detections, idcard_jj Various (check individual) Roboflow Universe
Passports segment_passport Various (check individual) Roboflow Universe
Books book_reader, page_segmentation_tecgp, book_cmjt2 Various (check individual) Roboflow Universe

Note: Roboflow datasets have various licenses. Please check the individual dataset pages on Roboflow Universe for specific license terms.

Features

Feature Type Description
image Image The document image (JPEG)
filename string Original filename for traceability
is_negative bool True if image contains no document
corner_tl_x float32 Top-left corner X coordinate (normalized 0-1)
corner_tl_y float32 Top-left corner Y coordinate (normalized 0-1)
corner_tr_x float32 Top-right corner X coordinate (normalized 0-1)
corner_tr_y float32 Top-right corner Y coordinate (normalized 0-1)
corner_br_x float32 Bottom-right corner X coordinate (normalized 0-1)
corner_br_y float32 Bottom-right corner Y coordinate (normalized 0-1)
corner_bl_x float32 Bottom-left corner X coordinate (normalized 0-1)
corner_bl_y float32 Bottom-left corner Y coordinate (normalized 0-1)

Corner Order

Corners are ordered clockwise starting from top-left:

1 (TL) -------- 2 (TR)
   |              |
   |   Document   |
   |              |
4 (BL) -------- 3 (BR)

Coordinate System

  • Coordinates are normalized to the range [0, 1]
  • To convert to pixel coordinates: pixel_x = corner_x * image_width
  • Origin (0, 0) is at the top-left of the image

Negative Samples

Images with is_negative=True:

  • Do not contain any document
  • All corner coordinates are null
  • Useful for training classifiers to reject non-document images

Usage

Loading the Dataset

from datasets import load_dataset

# Load all splits
dataset = load_dataset("mapo80/DocCornerDataset")

# Access specific splits
train_data = dataset["train"]
val_data = dataset["validation"]
test_data = dataset["test"]

print(f"Train: {len(train_data)} samples")
print(f"Val: {len(val_data)} samples")
print(f"Test: {len(test_data)} samples")

Iterating Over Samples

for sample in dataset["train"]:
    image = sample["image"]  # PIL Image
    filename = sample["filename"]

    if not sample["is_negative"]:
        # Get corner coordinates (normalized 0-1)
        corners = [
            (sample["corner_tl_x"], sample["corner_tl_y"]),
            (sample["corner_tr_x"], sample["corner_tr_y"]),
            (sample["corner_br_x"], sample["corner_br_y"]),
            (sample["corner_bl_x"], sample["corner_bl_y"]),
        ]

        # Convert to pixel coordinates
        w, h = image.size
        corners_px = [(int(x * w), int(y * h)) for x, y in corners]

Visualizing Annotations

from PIL import Image, ImageDraw

def draw_corners(image, corners, color=(0, 255, 0), width=3):
    """Draw document corners on image."""
    draw = ImageDraw.Draw(image)
    w, h = image.size

    # Convert normalized to pixel coords
    points = [(int(c[0] * w), int(c[1] * h)) for c in corners]

    # Draw polygon
    for i in range(4):
        draw.line([points[i], points[(i+1) % 4]], fill=color, width=width)

    # Draw corner circles
    for p in points:
        r = 5
        draw.ellipse([p[0]-r, p[1]-r, p[0]+r, p[1]+r], fill=color)

    return image

# Example usage
sample = dataset["train"][0]
if not sample["is_negative"]:
    corners = [
        (sample["corner_tl_x"], sample["corner_tl_y"]),
        (sample["corner_tr_x"], sample["corner_tr_y"]),
        (sample["corner_br_x"], sample["corner_br_y"]),
        (sample["corner_bl_x"], sample["corner_bl_y"]),
    ]
    annotated = draw_corners(sample["image"].copy(), corners)
    annotated.show()

Training a Model (PyTorch Example)

import torch
from torch.utils.data import DataLoader
from datasets import load_dataset

dataset = load_dataset("mapo80/DocCornerDataset")

def collate_fn(batch):
    images = torch.stack([transform(s["image"]) for s in batch])

    # Stack corner coordinates (8 values per sample)
    corners = []
    for s in batch:
        if s["is_negative"]:
            corners.append(torch.zeros(8))
        else:
            corners.append(torch.tensor([
                s["corner_tl_x"], s["corner_tl_y"],
                s["corner_tr_x"], s["corner_tr_y"],
                s["corner_br_x"], s["corner_br_y"],
                s["corner_bl_x"], s["corner_bl_y"],
            ]))

    return images, torch.stack(corners)

train_loader = DataLoader(
    dataset["train"],
    batch_size=32,
    shuffle=True,
    collate_fn=collate_fn
)

Model Performance

Models trained on this dataset achieve the following performance:

Model Input Size mIoU (val) mIoU (test)
MobileNetV2 (alpha=0.35) 224x224 0.9894 0.9826
MobileNetV2 (alpha=0.35) 256x256 0.9902 0.9819

mIoU = Mean Intersection over Union between predicted and ground truth quadrilaterals

Citation

If you use this dataset in your research, please cite this dataset and the original source datasets:

@dataset{doccornerdataset2025,
  author = {mapo80},
  title = {DocCornerDataset: Document Corner Detection Dataset},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/datasets/mapo80/DocCornerDataset}
}

Please also cite the original datasets used:

  • MIDV-500/MIDV-2019 (Arlazarov et al., 2019)
  • SmartDoc (Burie et al., 2015)
  • COCO (Lin et al., 2014)

License

⚠️ This dataset is compiled from multiple sources with different licenses.

Source License
MIDV-500/MIDV-2019 Research use only
SmartDoc Research use only
COCO CC BY 4.0
Roboflow datasets Various (check individual datasets)

Before using this dataset, please review the licenses of the original datasets:

Acknowledgments

This dataset was created by combining and processing multiple open-source datasets. We thank the authors of MIDV, SmartDoc, COCO, and the Roboflow community for making their data available.

Related Projects

  • DocCornerNet - Document corner detection model trained on this dataset