kshitijthakkar's picture
Add SMOLTRACE dataset card
52edab4 verified
metadata
license: agpl-3.0
tags:
  - smoltrace
  - smolagents
  - evaluation
  - benchmark
  - llm
  - agents
SMOLTRACE Logo

Tiny Agents. Total Visibility.

GitHub PyPI Documentation


SMOLTRACE GPU & Environmental Metrics

This dataset contains time-series GPU metrics and environmental impact data from a SMOLTRACE benchmark run.

Dataset Information

Field Value
Model ministral-3:3b
Run ID 48252774-d862-4c4e-8a90-54dc5fd3df2c
Total Samples 313
Generated 2025-12-10 13:55:15 UTC
GPU Metrics Available

Schema

Column Type Description
run_id string Unique run identifier
timestamp string ISO timestamp of measurement
timestamp_unix_nano string Unix nanosecond timestamp
service_name string Service identifier
gpu_id string GPU device ID
gpu_name string GPU model name
gpu_utilization_percent float GPU compute utilization (0-100%)
gpu_memory_used_mib float GPU memory used (MiB)
gpu_memory_total_mib float Total GPU memory (MiB)
gpu_temperature_celsius float GPU temperature (°C)
gpu_power_watts float GPU power consumption (W)
co2_emissions_gco2e float Cumulative CO2 emissions (gCO2e)
power_cost_usd float Cumulative power cost (USD)

Environmental Impact

SMOLTRACE tracks environmental metrics to help you understand the carbon footprint of your AI workloads:

  • CO2 Emissions: Calculated based on GPU power consumption and regional carbon intensity
  • Power Cost: Estimated electricity cost based on configurable rates

Usage

from datasets import load_dataset
import pandas as pd

# Load metrics
ds = load_dataset("YOUR_USERNAME/smoltrace-metrics-TIMESTAMP")

# Convert to DataFrame for analysis
df = pd.DataFrame(ds['train'])

# Plot GPU utilization over time
import matplotlib.pyplot as plt
plt.plot(df['timestamp'], df['gpu_utilization_percent'])
plt.xlabel('Time')
plt.ylabel('GPU Utilization (%)')
plt.title('GPU Utilization During Evaluation')
plt.show()

# Get total environmental impact
total_co2 = df['co2_emissions_gco2e'].max()
total_cost = df['power_cost_usd'].max()
print(f"Total CO2: {total_co2:.4f} gCO2e")
print(f"Total Cost: ${total_cost:.6f}")

Related Datasets

This evaluation run also generated:

  • Results Dataset: Pass/fail outcomes for each test case
  • Traces Dataset: Detailed OpenTelemetry execution traces
  • Leaderboard: Aggregated metrics for model comparison

About SMOLTRACE

SMOLTRACE is a comprehensive benchmarking and evaluation framework for Smolagents - HuggingFace's lightweight agent library.

Key Features

  • Automated agent evaluation with customizable test cases
  • OpenTelemetry-based tracing for detailed execution insights
  • GPU metrics collection (utilization, memory, temperature, power)
  • CO2 emissions and power cost tracking
  • Leaderboard aggregation and comparison

Quick Links

Installation

pip install smoltrace

Citation

If you use SMOLTRACE in your research, please cite:

@software{smoltrace,
  title = {SMOLTRACE: Benchmarking Framework for Smolagents},
  author = {Thakkar, Kshitij},
  url = {https://github.com/Mandark-droid/SMOLTRACE},
  year = {2025}
}

Generated by SMOLTRACE