Datasets:
image
imagewidth (px) 256
256
| label
class label 4
classes |
|---|---|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
|
0A
|
LEVIR-MCI-Trees
Overview
LEVIR-MCI-Trees is a curated subset of the LEVIR-MCI dataset specifically focused on tree cover changes in urban and peri-urban environments. This dataset supports joint change detection and captioning tasks for remote sensing imagery, containing bi-temporal image pairs with pixel-level change masks and semantic descriptions.
Dataset Details
- Source: Filtered subset of LEVIR-MCI dataset (Liu et al., 2024)
- Total Examples: 2,305 image pairs
- Spatial Resolution: 0.5m/pixel
- Image Size: 256×256 pixels
- Temporal Range: 5-15 years between image pairs
- Geographic Focus: Urban and peri-urban areas with tree cover changes
Dataset Splits
- Training: 1,518 examples (66%)
- Validation: 374 examples (16%)
- Test: 413 examples (18%)
Data Format
Each example contains:
- Bi-temporal image pairs: Two RGB images (Image A and Image B) captured at different time points
- Change mask: Binary/multi-class segmentation mask highlighting changes to roads and buildings
- Captions: Five human-annotated captions describing the observed changes from varying perspectives
Filtering Criteria
Examples are selected from LEVIR-MCI based on caption content. An image pair is included if at least one of its five captions contains tree-related keywords: 'tree', 'trees', 'wood', 'woods', 'woodland', 'wooded', 'forest', 'forests', 'jungle', or 'jungles'.
Key Characteristics
- Change Coverage: Mean 15.28%, maximum 72.79% of image area
- Annotation Focus: Pixel-level annotations for roads and buildings (not trees directly)
- Caption Style: Concise descriptions with diverse vocabulary and varied perspectives
- Object Geometry: Regular geometric patterns characteristic of urban infrastructure and managed landscapes
- Image Quality: High-resolution imagery suitable for fine-grained analysis
Use Cases
- Remote sensing change detection in urban environments
- Change captioning and description generation
- Multi-task learning for vision-language models
- Benchmarking model performance on high-resolution imagery
- Urban forest monitoring and tree cover analysis
- Training and evaluating interactive remote sensing agents
Limitations
- Change masks only annotate roads and buildings, not tree cover changes directly
- Limited to high-resolution imagery (0.5m/pixel)
- Fixed image size of 256×256 pixels
- Urban-focused context may not represent natural forest environments
- Variable temporal spans between image pairs (5-15 years)
Citation
If you use this dataset, please cite:
title={Forest-Chat: Adapting Vision-Language Agents for Interactive Forest Change Analysis},
author={Brock, James and Zhang, Ce and Anantrasirichai, Nantheera},
journal={Ecological Informatics},
year={2024}
}
@article{liu2024changeagent,
title={Change-Agent: Towards Interactive Comprehensive Remote Sensing Change Interpretation and Analysis},
author={Liu, Chenyang and Chen, Keyan and Zhang, Haotian and Qi, Zipeng and Zou, Zhengxia and Shi, Zhenwei},
journal={IEEE Transactions on Geoscience and Remote Sensing},
year={2024}
}
Paper information available at: https://huggingface.co/papers/2601.04497 and https://huggingface.co/papers/2601.14637.
License
MIT License - Academic re-use purpose only
Contact
For questions or issues regarding this dataset, please contact:
- James Brock: [email protected]
- School of Computer Science, University of Bristol
- Downloads last month
- 53