|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
from transformers import Qwen2_5_VLProcessor |
|
|
from transformers.feature_extraction_utils import BatchFeature |
|
|
from transformers.models.qwen2_5_vl.processing_qwen2_5_vl import ( |
|
|
Qwen2_5_VLProcessorKwargs, |
|
|
) |
|
|
|
|
|
|
|
|
class TimeLensProcessor(Qwen2_5_VLProcessor): |
|
|
r""" |
|
|
Constructs a Qwen2.5-VL processor which wraps a Qwen2.5-VL image processor and a Qwen2 tokenizer into a single processor. |
|
|
[`Qwen2_5_VLProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the |
|
|
[`~Qwen2_5_VLProcessor.__call__`] and [`~Qwen2_5_VLProcessor.decode`] for more information. |
|
|
Args: |
|
|
image_processor ([`Qwen2VLImageProcessor`], *optional*): |
|
|
The image processor is a required input. |
|
|
tokenizer ([`Qwen2TokenizerFast`], *optional*): |
|
|
The tokenizer is a required input. |
|
|
video_processor ([`Qwen2_5_VLVideoProcessor`], *optional*): |
|
|
The video processor is a required input. |
|
|
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages |
|
|
in a chat into a tokenizable string. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
image_processor=None, |
|
|
tokenizer=None, |
|
|
video_processor=None, |
|
|
chat_template=None, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__( |
|
|
image_processor, tokenizer, video_processor, chat_template, **kwargs |
|
|
) |
|
|
|
|
|
self.vision_start = ( |
|
|
"<|vision_start|>" |
|
|
if not hasattr(tokenizer, "vision_start") |
|
|
else tokenizer.vision_start |
|
|
) |
|
|
self.vision_end = ( |
|
|
"<|vision_end|>" |
|
|
if not hasattr(tokenizer, "vision_end") |
|
|
else tokenizer.vision_end |
|
|
) |
|
|
|
|
|
|
|
|
def __call__( |
|
|
self, |
|
|
images=None, |
|
|
text=None, |
|
|
videos=None, |
|
|
**kwargs, |
|
|
) -> BatchFeature: |
|
|
""" |
|
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` |
|
|
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode |
|
|
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwargs` arguments to |
|
|
Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`. |
|
|
|
|
|
Args: |
|
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`): |
|
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch |
|
|
tensor. Both channels-first and channels-last formats are supported. |
|
|
text (`str`, `list[str]`, `list[list[str]]`): |
|
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
|
videos (`np.ndarray`, `torch.Tensor`, `list[np.ndarray]`, `list[torch.Tensor]`): |
|
|
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch |
|
|
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported. |
|
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
|
- `'jax'`: Return JAX `jnp.ndarray` objects. |
|
|
|
|
|
Returns: |
|
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields: |
|
|
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. |
|
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when |
|
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not |
|
|
`None`). |
|
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. |
|
|
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`. |
|
|
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`. |
|
|
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`. |
|
|
- **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`. |
|
|
""" |
|
|
output_kwargs = self._merge_kwargs( |
|
|
Qwen2_5_VLProcessorKwargs, |
|
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
image_inputs = videos_inputs = {} |
|
|
if images is not None: |
|
|
image_inputs = self.image_processor( |
|
|
images=images, **output_kwargs["images_kwargs"] |
|
|
) |
|
|
image_grid_thw = image_inputs["image_grid_thw"] |
|
|
|
|
|
if videos is not None: |
|
|
|
|
|
|
|
|
videos, metadata = [v[0] for v in videos], [v[1] for v in videos] |
|
|
|
|
|
for cur_video_tensor in videos: |
|
|
cur_video_tensor[1::2] = cur_video_tensor[::2] |
|
|
|
|
|
frames_timestamps = [ |
|
|
[ |
|
|
idx / cur_metadata["fps"] |
|
|
for idx in cur_metadata["frames_indices"][::2] |
|
|
] |
|
|
for cur_metadata in metadata |
|
|
] |
|
|
|
|
|
videos_inputs = self.video_processor( |
|
|
videos=videos, **output_kwargs["videos_kwargs"] |
|
|
) |
|
|
video_grid_thw = videos_inputs["video_grid_thw"] |
|
|
|
|
|
|
|
|
if not isinstance(text, list): |
|
|
text = [text] |
|
|
|
|
|
text = text.copy() |
|
|
if images is not None: |
|
|
merge_length = self.image_processor.merge_size**2 |
|
|
index = 0 |
|
|
for i in range(len(text)): |
|
|
while self.image_token in text[i]: |
|
|
num_image_tokens = image_grid_thw[index].prod() // merge_length |
|
|
text[i] = text[i].replace( |
|
|
self.image_token, "<|placeholder|>" * num_image_tokens, 1 |
|
|
) |
|
|
index += 1 |
|
|
text[i] = text[i].replace("<|placeholder|>", self.image_token) |
|
|
|
|
|
if videos is not None: |
|
|
merge_length = self.video_processor.merge_size**2 |
|
|
index = 0 |
|
|
|
|
|
for i in range(len(text)): |
|
|
while self.video_token in text[i]: |
|
|
cur_video_tokens = "" |
|
|
num_tokens_per_frame = ( |
|
|
video_grid_thw[index][1:].prod() // merge_length |
|
|
) |
|
|
per_frame_tokens = ( |
|
|
self.vision_start |
|
|
+ "<|placeholder|>" * num_tokens_per_frame |
|
|
+ self.vision_end |
|
|
) |
|
|
for cur_frames_timestamp in frames_timestamps[index]: |
|
|
cur_video_tokens += ( |
|
|
f"{cur_frames_timestamp:.1f}s: " + per_frame_tokens |
|
|
) |
|
|
|
|
|
text[i] = text[i].replace( |
|
|
self.vision_start + self.video_token + self.vision_end, |
|
|
cur_video_tokens, |
|
|
1, |
|
|
) |
|
|
index += 1 |
|
|
text[i] = text[i].replace("<|placeholder|>", self.image_token) |
|
|
|
|
|
image_grid_thw = torch.tensor( |
|
|
[ |
|
|
[1, grid_h, grid_w] |
|
|
for grid_t, grid_h, grid_w in video_grid_thw |
|
|
for _ in range(grid_t) |
|
|
], |
|
|
dtype=torch.long, |
|
|
) |
|
|
|
|
|
image_inputs = { |
|
|
"pixel_values": videos_inputs[ |
|
|
"pixel_values_videos" |
|
|
], |
|
|
"image_grid_thw": image_grid_thw, |
|
|
} |
|
|
videos_inputs = {} |
|
|
|
|
|
|
|
|
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None) |
|
|
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop( |
|
|
"return_mm_token_type_ids", None |
|
|
) |
|
|
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"]) |
|
|
self._check_special_mm_tokens(text, text_inputs, modalities=["image", "video"]) |
|
|
|
|
|
if return_mm_token_type_ids: |
|
|
array_ids = np.array(text_inputs["input_ids"]) |
|
|
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"]) |
|
|
mm_token_type_ids[array_ids == self.image_token_id] = 1 |
|
|
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist() |
|
|
|
|
|
return BatchFeature( |
|
|
data={**text_inputs, **image_inputs, **videos_inputs}, |
|
|
tensor_type=return_tensors, |
|
|
) |
|
|
|