File size: 11,065 Bytes
3c8f7cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# Modified from https://github.com/huggingface/transformers/blob/v4.57.1/src/transformers/models/qwen2_5_vl/processing_qwen2_5_vl.py
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from transformers import Qwen2_5_VLProcessor
from transformers.feature_extraction_utils import BatchFeature
from transformers.models.qwen2_5_vl.processing_qwen2_5_vl import (
Qwen2_5_VLProcessorKwargs,
)
class TimeLensProcessor(Qwen2_5_VLProcessor):
r"""
Constructs a Qwen2.5-VL processor which wraps a Qwen2.5-VL image processor and a Qwen2 tokenizer into a single processor.
[`Qwen2_5_VLProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
[`~Qwen2_5_VLProcessor.__call__`] and [`~Qwen2_5_VLProcessor.decode`] for more information.
Args:
image_processor ([`Qwen2VLImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`Qwen2TokenizerFast`], *optional*):
The tokenizer is a required input.
video_processor ([`Qwen2_5_VLVideoProcessor`], *optional*):
The video processor is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
def __init__(
self,
image_processor=None,
tokenizer=None,
video_processor=None,
chat_template=None,
**kwargs,
):
super().__init__(
image_processor, tokenizer, video_processor, chat_template, **kwargs
)
# ============ [TimeLens] Modification BEGIN ============
self.vision_start = (
"<|vision_start|>"
if not hasattr(tokenizer, "vision_start")
else tokenizer.vision_start
)
self.vision_end = (
"<|vision_end|>"
if not hasattr(tokenizer, "vision_end")
else tokenizer.vision_end
)
# ============ [TimeLens] Modification END ==============
def __call__(
self,
images=None,
text=None,
videos=None,
**kwargs,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwargs` arguments to
Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `list[str]`, `list[list[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
videos (`np.ndarray`, `torch.Tensor`, `list[np.ndarray]`, `list[torch.Tensor]`):
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
- **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
"""
output_kwargs = self._merge_kwargs(
Qwen2_5_VLProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
image_inputs = videos_inputs = {}
if images is not None:
image_inputs = self.image_processor(
images=images, **output_kwargs["images_kwargs"]
)
image_grid_thw = image_inputs["image_grid_thw"]
if videos is not None:
# ============ [TimeLens] Modification BEGIN ============
# videos is a list of (video_tensor, metadata) tuples
videos, metadata = [v[0] for v in videos], [v[1] for v in videos]
# Duplicate frames at even indices
for cur_video_tensor in videos:
cur_video_tensor[1::2] = cur_video_tensor[::2]
# Calculate sampled timestamps for each video
frames_timestamps = [
[
idx / cur_metadata["fps"]
for idx in cur_metadata["frames_indices"][::2]
]
for cur_metadata in metadata
]
videos_inputs = self.video_processor(
videos=videos, **output_kwargs["videos_kwargs"]
)
video_grid_thw = videos_inputs["video_grid_thw"]
# ============ [TimeLens] Modification END ==============
if not isinstance(text, list):
text = [text]
text = text.copy() # below lines change text in-place
if images is not None:
merge_length = self.image_processor.merge_size**2
index = 0
for i in range(len(text)):
while self.image_token in text[i]:
num_image_tokens = image_grid_thw[index].prod() // merge_length
text[i] = text[i].replace(
self.image_token, "<|placeholder|>" * num_image_tokens, 1
)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.image_token)
if videos is not None:
merge_length = self.video_processor.merge_size**2
index = 0
# ============ [TimeLens] Modification BEGIN ============
for i in range(len(text)):
while self.video_token in text[i]:
cur_video_tokens = ""
num_tokens_per_frame = (
video_grid_thw[index][1:].prod() // merge_length
)
per_frame_tokens = (
self.vision_start
+ "<|placeholder|>" * num_tokens_per_frame
+ self.vision_end
)
for cur_frames_timestamp in frames_timestamps[index]:
cur_video_tokens += (
f"{cur_frames_timestamp:.1f}s: " + per_frame_tokens
)
text[i] = text[i].replace(
self.vision_start + self.video_token + self.vision_end,
cur_video_tokens,
1,
)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.image_token)
# modeling_qwen2_5_vl.py calls `.item()` on image_grid_thw to convert t, h, w from tensor to int, so we create image_grid_thw as Tensor to be compatible with `.item()` call
image_grid_thw = torch.tensor(
[
[1, grid_h, grid_w]
for grid_t, grid_h, grid_w in video_grid_thw
for _ in range(grid_t)
],
dtype=torch.long,
)
image_inputs = {
"pixel_values": videos_inputs[
"pixel_values_videos"
], # [grid_t * grid_h * grid_w, channel * temporal_patch_size * patch_size * patch_size] = [num_patches, dim]
"image_grid_thw": image_grid_thw,
}
videos_inputs = {}
# ============ [TimeLens] Modification END ==============
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop(
"return_mm_token_type_ids", None
)
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
self._check_special_mm_tokens(text, text_inputs, modalities=["image", "video"])
if return_mm_token_type_ids:
array_ids = np.array(text_inputs["input_ids"])
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
mm_token_type_ids[array_ids == self.image_token_id] = 1
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
return BatchFeature(
data={**text_inputs, **image_inputs, **videos_inputs},
tensor_type=return_tensors,
)
|