Qwen3-Next-80B-A3B-Instruct-NVFP4
Model Overview
- Model Architecture: Qwen3NextForCausalLM
- Input: Text
- Output: Text
- Model Optimizations:
- Weight quantization: FP4
- Activation quantization: FP4
- Release Date:
- Version: 1.0
- Model Developers:: Red Hat
Quantized version of Qwen/Qwen3-Next-80B-A3B-Instruct.
Model Optimizations
This model was obtained by quantizing the weights and activations of Qwen/Qwen3-Next-80B-A3B-Instruct to FP8 data type. This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. Only the weights and activations of the linear operators within transformers blocks of the language model are quantized.
Deployment
Use with vLLM
- Initialize vLLM server:
vllm serve RedHatAI/Qwen3-Next-80B-A3B-Instruct-NVFP4 --tensor_parallel_size 2
- Send requests to the server:
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
model = "RedHatAI/Qwen3-Next-80B-A3B-Instruct-NVFP4"
messages = [
{"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]
outputs = client.chat.completions.create(
model=model,
messages=messages,
)
generated_text = outputs.choices[0].message.content
print(generated_text)
Creation
This model was quantized using the llm-compressor library as shown below.
Creation details
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.utils import dispatch_for_generation
# NOTE: Requires a minimum of transformers 4.57.0
MODEL_ID = "Qwen/Qwen3-Next-80B-A3B-Instruct"
# Load model.
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"
# Select number of samples
NUM_CALIBRATION_SAMPLES = 20
MAX_SEQUENCE_LENGTH = 2048
# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]")
ds = ds.shuffle(seed=42)
def preprocess(example):
return {
"text": tokenizer.apply_chat_template(
example["messages"],
tokenize=False,
)
}
ds = ds.map(preprocess)
# Tokenize inputs.
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
add_special_tokens=False,
)
ds = ds.map(tokenize, remove_columns=ds.column_names)
# Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp4 with per group 16 via ptq
# * calibrate a global_scale for activations, which will be used to
# quantize activations to fp4 on the fly
recipe = QuantizationModifier(
targets="Linear",
scheme="NVFP4",
ignore=[
"lm_head",
"re:.*mlp.gate$",
"re:.*mlp.shared_expert_gate$",
"re:.*linear_attn.*",
],
)
# Apply quantization.
# MoE calibration is now handled automatically by the pipeline.
# We set `moe_calibrate_all_experts` to True to ensure all experts receive
# calibration data. This temporarily updates the model definition to use
# `CalibrationQwen3NextSparseMoeBlock` (from `llmcompressor.modeling.qwen3_next_moe`)
# which replaces the original `Qwen3NextSparseMoeBlock` class.
# This updates how the forward pass is handled in the MoE block during calibration.
# Feel free to update the definition under
# llm-compressor/src/llmcompressor/modeling/qwen3_next_moe.py to play around with
# this behavior and evaluate its impact on quantization performance.
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
moe_calibrate_all_experts=True,
)
print("\n\n")
print("========== SAMPLE GENERATION ==============")
dispatch_for_generation(model)
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to(
model.device
)
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
print("==========================================\n\n")
# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-NVFP4"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
Evaluation
The model was evaluated on the OpenLLM leaderboard task, using lm-evaluation-harness. vLLM was used for all evaluations.
Evaluation details
Openllm V1
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-Next-80B-A3B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=16384,tensor_parallel_size=2,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--show_config
Openllm V2
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-Next-80B-A3B-Instruct-NVFP4",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=2,gpu_memory_utilization=0.7,disable_log_stats=True,enable_chunked_prefill=True,trust_remote_code=True \
--tasks leaderboard \
--apply_chat_template \
--fewshot_as_multiturn \
--write_out \
--batch_size auto \
--show_config
Coding Benchmarks
evalplus.evaluate --model "RedHatAI/Qwen3-Next-80B-A3B-Instruct-NVFP4" \
--dataset "humaneval" \
--backend vllm \
--tp 2 \
--greedy
evalplus.evaluate --model "RedHatAI/Qwen3-Next-80B-A3B-Instruct-NVFP4" \
--dataset "mbpp" \
--backend vllm \
--tp 2 \
--greedy
- Downloads last month
- 261
Model tree for RedHatAI/Qwen3-Next-80B-A3B-Instruct-NVFP4
Base model
Qwen/Qwen3-Next-80B-A3B-Instruct