metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:1000
- loss:MultipleNegativesRankingLoss
base_model: google/embeddinggemma-300m
widget:
- source_sentence: >-
Qu'est-ce qui a motivé le retour de Claude LeBouthilier au
Nouveau-Brunswick?
sentences:
- >-
The driver of a vehicle that is approaching a railway crossing at which
a stop sign has been erected shall stop the vehicle within fifteen
metres, but not less than five metres, from the nearest rail of the
railway.
- >-
Je suis revenu vivre au Nouveau-Brunswick parce que je ne pouvais plus
dissocier mon écriture de mon lieu d’origine et de mon existence
quotidienne.
- Quelles sont les procédures pour obtenir un passeport canadien?
- source_sentence: Quels sont les moyens de dépistage du cancer du col de l'utérus?
sentences:
- Comprendre les différences entre le test Pap et le test VPH.
- >-
Employed and self-employed Nova Scotians who are not receiving
Employment Insurance (EI) and those who had or are in an EI waiting
period may qualify for this relief grant.
- Quelles sont les conditions pour obtenir une allocation familiale?
- source_sentence: >-
What are the responsibilities of crew members regarding surface
contamination?
sentences:
- What are the requirements for obtaining a Canadian passport?
- >-
Crew members are responsible to report suspected surface contamination
to the pilot-in-command as soon as it is discovered.
- >-
Plant breeders receive legal protection for up to 25 years for trees and
vines, and 20 years for other plant varieties.
- source_sentence: >-
Do oil and gas field workers have the same rights to consecutive hours off
as other employees in BC?
sentences:
- >-
The provision of the Act which provides for 32 consecutive hours free
from work each week does not apply to employees referred to in section
37.6 of this regulation.
- >-
Les nouveaux bureaux internationaux offriront des services pour
faciliter l'investissement dans la Saskatchewan et améliorer les
exportations vers l'Asie.
- >-
What are the requirements for registering a new business in British
Columbia?
- source_sentence: >-
What is the purpose of the funding provided by the Government of Canada to
the Federation of Black Canadians?
sentences:
- >-
Ghana is an attractive market for industries such as Agriculture,
Professional Training, Technical and vocational education and training
(TVET), Clean technologies, Infrastructure, Mining, and Oil and gas.
- What are the eligibility requirements for the Canada Pension Plan?
- >-
This investment through the Black Entrepreneurship Program (BEP)
Ecosystem Fund will allow the FBC to provide tools and resources to 170
Black youth entrepreneurs across multiple regions, supporting them to
successfully launch and grow their businesses.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on google/embeddinggemma-300m
This is a sentence-transformers model finetuned from google/embeddinggemma-300m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google/embeddinggemma-300m
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(4): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Neelkumar/my-embedding-gemma-1000")
# Run inference
queries = [
"What is the purpose of the funding provided by the Government of Canada to the Federation of Black Canadians?",
]
documents = [
'This investment through the Black Entrepreneurship Program (BEP) Ecosystem Fund will allow the FBC to provide tools and resources to 170 Black youth entrepreneurs across multiple regions, supporting them to successfully launch and grow their businesses.',
'What are the eligibility requirements for the Canada Pension Plan?',
'Ghana is an attractive market for industries such as Agriculture, Professional Training, Technical and vocational education and training (TVET), Clean technologies, Infrastructure, Mining, and Oil and gas.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.9830, -0.5013, 0.8960]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,000 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 15.8 tokens
- max: 35 tokens
- min: 8 tokens
- mean: 32.04 tokens
- max: 130 tokens
- min: 11 tokens
- mean: 15.01 tokens
- max: 42 tokens
- Samples:
anchor positive negative Quelles mesures les propriétaires peuvent-ils prendre pour éliminer les punaises de lit?Les propriétaires peuvent instaurer différentes mesures pour prévenir et éliminer les punaises des lits.Quelles sont les conditions pour obtenir une assurance automobile?Comment les pages web du gouvernement de la Saskatchewan sont-elles traduites en français?Un certain nombre de pages sur le site web du gouvernement de la Saskatchewan ont été traduites professionnellement en français.Quelles sont les exigences pour obtenir un permis de conduire?How long do plant breeders' rights last in Canada?Plant breeders receive legal protection for up to 25 years for trees and vines, and 20 years for other plant varieties.What are the requirements for importing a pet into Canada? - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 1learning_rate: 2e-05num_train_epochs: 5warmup_ratio: 0.1prompts: task: sentence similarity | query:
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 1per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: task: sentence similarity | query:batch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 1.0 | 1000 | 0.1065 |
| 2.0 | 2000 | 0.368 |
| 3.0 | 3000 | 0.2343 |
| 4.0 | 4000 | 0.1016 |
| 5.0 | 5000 | 0.0154 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.1.1
- Transformers: 4.57.0.dev0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}