💧 LFM2.5
Collection
Collection of Instruct, Base, and Japanese LFM2.5-1.2B models.
•
19 items
•
Updated
•
61
LFM2.5-1.2B-JP is a chat model specifically optimized for Japanese. While LFM2 already supported Japanese as one of eight languages, LFM2.5-JP pushes state-of-the-art on Japanese knowledge and instruction-following at its scale. This model is ideal for developers building Japanese-language applications where cultural and linguistic nuance matter.
Find more information about LFM2.5 in our blog post.
LFM2.5 is supported by many inference frameworks. See the Inference documentation for the full list.
| Name | Description | Docs | Notebook |
|---|---|---|---|
| Transformers | Simple inference with direct access to model internals. | Link | ![]() |
| vLLM | High-throughput production deployments with GPU. | Link | ![]() |
| llama.cpp | Cross-platform inference with CPU offloading. | Link | ![]() |
Here's a quick start example with transformers:
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model_id = "LiquidAI/LFM2.5-1.2B-JP"
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
dtype="bfloat16",
# attn_implementation="flash_attention_2" <- uncomment on compatible GPU
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
prompt = "What is C. elegans?"
input_ids = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
return_tensors="pt",
tokenize=True,
).to(model.device)
output = model.generate(
input_ids,
do_sample=True,
temperature=0.3,
min_p=0.15,
repetition_penalty=1.05,
max_new_tokens=512,
streamer=streamer,
)
We recommend fine-tuning LFM2.5 for your specific use case to achieve the best results.
| Name | Description | Docs | Notebook |
|---|---|---|---|
| SFT (Unsloth) | Supervised Fine-Tuning with LoRA using Unsloth. | Link | ![]() |
| SFT (TRL) | Supervised Fine-Tuning with LoRA using TRL. | Link | ![]() |
| DPO (TRL) | Direct Preference Optimization with LoRA using TRL. | Link | ![]() |
| Model | JMMLU | M-IFEval (ja) | GSM8K (ja) |
|---|---|---|---|
| LFM2.5-1.2B-JP | 50.7 | 58.1 | 56.0 |
| LFM2.5-1.2B-Instruct | 47.7 | 41.8 | 46.8 |
| Qwen3-1.7B (Instruct mode) | 47.7 | 40.3 | 46.0 |
| Llama 3.2 1B Instruct | 34.0 | 24.1 | 25.2 |
| TinySwallow-1.5B-Instruct | 48.0 | 36.5 | 47.2 |
| Gemma-2-Llama-Swallow-2b-it-v0.1 | 48.1 | 33.4 | 34.4 |
| Gemma-3-1b-it | 34.5 | 26.3 | 33.6 |
| Granite-4.0-h-1b | 42.2 | 39.3 | 42.8 |
| Sarashina2.2-1b-instruct-v0.1 | 40.2 | 21.9 | 44.4 |
Evaluation Notes
PROMPT_TEMPLATE = """与えられた選択問題に答えてください。回答の最後の行に「答え:{valid_options}」のように出力してください(例:「答え:X」)。
{question}
{options}"""
For enterprise solutions and edge deployment, contact [email protected].
@article{liquidai2025lfm2,
title={LFM2 Technical Report},
author={Liquid AI},
journal={arXiv preprint arXiv:2511.23404},
year={2025}
}
Base model
LiquidAI/LFM2.5-1.2B-Base