Matryoshka Representation Learning
Paper
•
2205.13147
•
Published
•
25
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'لا أعتقد ذلك',
'أخشى لا يا سيدي',
'رجل واحد في قميص برتقالي يرتدي خوذة بيضاء يركب دراجة.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
arabic-sts17EmbeddingSimilarityEvaluator| Metric | Value |
|---|---|
| pearson_cosine | 0.8113 |
| spearman_cosine | 0.8156 |
sentence_0 and sentence_1| sentence_0 | sentence_1 | |
|---|---|---|
| type | string | string |
| details |
|
|
| sentence_0 | sentence_1 |
|---|---|
ولد صغير يرتدي ملابس زرقاء يرتدي حذاء |
الصبي الصغير يرتدي ملابسه |
كيف يتم بناء كاميرات المراقبة؟ |
ما هي كاميرا المراقبة؟ |
لماذا الطاقة الإجمالية للكون صفر؟ |
إذا كان إجمالي الطاقة في الكون صفر، فهل يعني ذلك أن هناك طريقة لـ "صنع" المادة/الطاقة من خلال صنع نوع من النظير؟ |
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
384,
128
],
"matryoshka_weights": [
1,
1,
1
],
"n_dims_per_step": -1
}
eval_strategy: stepsper_device_train_batch_size: 24per_device_eval_batch_size: 24fp16: Truemulti_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 24per_device_eval_batch_size: 24per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | Training Loss | arabic-sts17_spearman_cosine |
|---|---|---|---|
| 0.0481 | 500 | 1.6592 | - |
| 0.0963 | 1000 | 1.177 | - |
| 0.1444 | 1500 | 1.0053 | - |
| 0.1925 | 2000 | 0.9125 | 0.8135 |
| 0.2406 | 2500 | 0.8212 | - |
| 0.2888 | 3000 | 0.8204 | - |
| 0.3369 | 3500 | 0.7696 | - |
| 0.3850 | 4000 | 0.7501 | 0.8089 |
| 0.4332 | 4500 | 0.7118 | - |
| 0.4813 | 5000 | 0.7073 | - |
| 0.5294 | 5500 | 0.6772 | - |
| 0.5775 | 6000 | 0.6637 | 0.8085 |
| 0.6257 | 6500 | 0.6507 | - |
| 0.6738 | 7000 | 0.605 | - |
| 0.7219 | 7500 | 0.6076 | - |
| 0.7700 | 8000 | 0.6076 | 0.8060 |
| 0.8182 | 8500 | 0.5594 | - |
| 0.8663 | 9000 | 0.5928 | - |
| 0.9144 | 9500 | 0.5587 | - |
| 0.9626 | 10000 | 0.5736 | 0.8099 |
| 1.0 | 10389 | - | 0.8122 |
| 1.0107 | 10500 | 0.555 | - |
| 1.0588 | 11000 | 0.5233 | - |
| 1.1069 | 11500 | 0.5216 | - |
| 1.1551 | 12000 | 0.5176 | 0.8015 |
| 1.2032 | 12500 | 0.4865 | - |
| 1.2513 | 13000 | 0.4907 | - |
| 1.2995 | 13500 | 0.5079 | - |
| 1.3476 | 14000 | 0.4991 | 0.8027 |
| 1.3957 | 14500 | 0.4834 | - |
| 1.4438 | 15000 | 0.4626 | - |
| 1.4920 | 15500 | 0.4442 | - |
| 1.5401 | 16000 | 0.4768 | 0.8079 |
| 1.5882 | 16500 | 0.4459 | - |
| 1.6363 | 17000 | 0.4409 | - |
| 1.6845 | 17500 | 0.4434 | - |
| 1.7326 | 18000 | 0.4264 | 0.8041 |
| 1.7807 | 18500 | 0.4341 | - |
| 1.8289 | 19000 | 0.4143 | - |
| 1.8770 | 19500 | 0.4304 | - |
| 1.9251 | 20000 | 0.4314 | 0.8133 |
| 1.9732 | 20500 | 0.448 | - |
| 2.0 | 20778 | - | 0.8116 |
| 2.0214 | 21000 | 0.3985 | - |
| 2.0695 | 21500 | 0.3854 | - |
| 2.1176 | 22000 | 0.3875 | 0.8095 |
| 2.1658 | 22500 | 0.4139 | - |
| 2.2139 | 23000 | 0.3956 | - |
| 2.2620 | 23500 | 0.3856 | - |
| 2.3101 | 24000 | 0.3816 | 0.8110 |
| 2.3583 | 24500 | 0.3732 | - |
| 2.4064 | 25000 | 0.3662 | - |
| 2.4545 | 25500 | 0.3773 | - |
| 2.5026 | 26000 | 0.3703 | 0.8058 |
| 2.5508 | 26500 | 0.3666 | - |
| 2.5989 | 27000 | 0.369 | - |
| 2.6470 | 27500 | 0.3612 | - |
| 2.6952 | 28000 | 0.3444 | 0.8135 |
| 2.7433 | 28500 | 0.3667 | - |
| 2.7914 | 29000 | 0.3707 | - |
| 2.8395 | 29500 | 0.3698 | - |
| 2.8877 | 30000 | 0.3658 | 0.8156 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}