# GPU-enabled Dockerfile for DGX Spark deployment (ARM64/aarch64 + GB10) # Using NVIDIA NGC PyTorch container - optimized for latest NVIDIA hardware # https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch # Using 24.08 for Python 3.10 compatibility with older package versions FROM nvcr.io/nvidia/pytorch:24.08-py3 # Install additional system dependencies RUN apt-get update && apt-get install -y \ curl \ && rm -rf /var/lib/apt/lists/* WORKDIR /app # PyTorch is pre-installed in NGC container with proper GPU support # Just install remaining requirements (excluding torch, zarr, numcodecs) COPY requirements.txt . RUN grep -v "^torch==" requirements.txt | \ grep -v "^zarr==" | \ grep -v "^numcodecs==" > requirements-spark.txt && \ pip install --no-cache-dir -r requirements-spark.txt # Copy backend code COPY backend/ ./backend/ COPY app.py . # Create runs directory RUN mkdir -p /app/runs # Health check (uses configurable port via environment) HEALTHCHECK --interval=30s --timeout=3s --start-period=60s --retries=3 \ CMD curl -f http://localhost:${PORT:-8000}/health || exit 1 # Expose configurable port EXPOSE ${PORT:-8000} # Default command (overridden by compose.spark.yml) CMD ["uvicorn", "backend.model_service:app", "--host", "0.0.0.0", "--port", "8000"]