gary-boon Claude Opus 4.5 commited on
Commit
a4cfbff
·
1 Parent(s): a009a49

Use NVIDIA NGC PyTorch container for GB10 support

Browse files

NGC containers are optimized for latest NVIDIA hardware including GB10.
PyTorch comes pre-installed with proper CUDA/GPU support.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <[email protected]>

Files changed (1) hide show
  1. docker/Dockerfile.spark +9 -17
docker/Dockerfile.spark CHANGED
@@ -1,30 +1,22 @@
1
- # GPU-enabled Dockerfile for DGX Spark deployment (ARM64/aarch64 + CUDA 13.0)
2
- FROM nvidia/cuda:12.4.0-runtime-ubuntu22.04
 
 
3
 
4
- # Install Python and system dependencies
5
  RUN apt-get update && apt-get install -y \
6
- python3 \
7
- python3-pip \
8
- python3-dev \
9
  curl \
10
- build-essential \
11
- && rm -rf /var/lib/apt/lists/* \
12
- && ln -s /usr/bin/python3 /usr/bin/python
13
 
14
  WORKDIR /app
15
 
16
- # Install PyTorch nightly with CUDA support (for newer GPU architectures like GB10/sm_121)
17
- # Using nightly builds which may have support for newer compute capabilities
18
- RUN pip3 install --no-cache-dir --pre \
19
- torch \
20
- --index-url https://download.pytorch.org/whl/nightly/cu124
21
-
22
- # Copy requirements and install (excluding packages with ARM64 issues)
23
  COPY requirements.txt .
24
  RUN grep -v "^torch==" requirements.txt | \
25
  grep -v "^zarr==" | \
26
  grep -v "^numcodecs==" > requirements-spark.txt && \
27
- pip3 install --no-cache-dir -r requirements-spark.txt
28
 
29
  # Copy backend code
30
  COPY backend/ ./backend/
 
1
+ # GPU-enabled Dockerfile for DGX Spark deployment (ARM64/aarch64 + GB10)
2
+ # Using NVIDIA NGC PyTorch container - optimized for latest NVIDIA hardware
3
+ # https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch
4
+ FROM nvcr.io/nvidia/pytorch:24.11-py3
5
 
6
+ # Install additional system dependencies
7
  RUN apt-get update && apt-get install -y \
 
 
 
8
  curl \
9
+ && rm -rf /var/lib/apt/lists/*
 
 
10
 
11
  WORKDIR /app
12
 
13
+ # PyTorch is pre-installed in NGC container with proper GPU support
14
+ # Just install remaining requirements (excluding torch, zarr, numcodecs)
 
 
 
 
 
15
  COPY requirements.txt .
16
  RUN grep -v "^torch==" requirements.txt | \
17
  grep -v "^zarr==" | \
18
  grep -v "^numcodecs==" > requirements-spark.txt && \
19
+ pip install --no-cache-dir -r requirements-spark.txt
20
 
21
  # Copy backend code
22
  COPY backend/ ./backend/