Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,765 Bytes
e23482e 5a81bcf e23482e 5a81bcf e23482e 5e0a9e1 e23482e 2dd363a e23482e 2dd363a e23482e 2dd363a e23482e 8382bf4 e23482e 594268e e23482e 8bcd1bc e23482e 594268e e23482e dce8196 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
import os
import sys
import random
import warnings
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
# Suppress deprecation warnings from dependencies
warnings.filterwarnings(
"ignore", category=FutureWarning, message=".*torch.distributed.reduce_op.*"
)
import gradio as gr
import torch
from huggingface_hub import snapshot_download
from PIL import Image
import numpy as np
import spaces
import wan
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
from wan.utils.utils import cache_video
import gc
# --- 1. Global Setup and Model Loading ---
print("Starting Gradio App for Wan 2.2 TI2V-5B...")
print(
"Note: Flash-attn is optional. If not available, PyTorch's scaled_dot_product_attention will be used."
)
# Download model snapshots from Hugging Face Hub
repo_id = "Wan-AI/Wan2.2-TI2V-5B"
print(f"Downloading/loading checkpoints for {repo_id}...")
ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False)
print(f"Using checkpoints from {ckpt_dir}")
# Load the model configuration
TASK_NAME = "ti2v-5B"
cfg = WAN_CONFIGS[TASK_NAME]
FIXED_FPS = cfg.sample_fps
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 121
# Dimension calculation constants
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 704
DEFAULT_W_SLIDER_VALUE = 1280
NEW_FORMULA_MAX_AREA = 1280.0 * 704.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1280
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1280
# Instantiate the pipeline in the global scope
print("Initializing WanTI2V pipeline...")
device = "cuda" if torch.cuda.is_available() else "cpu"
device_id = 0 if torch.cuda.is_available() else -1
pipeline = wan.WanTI2V(
config=cfg,
checkpoint_dir=ckpt_dir,
device_id=device_id,
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_sp=False,
t5_cpu=False,
init_on_cpu=False,
convert_model_dtype=True,
)
print("Pipeline initialized and ready.")
# --- Helper Functions ---
def _calculate_new_dimensions_wan(
pil_image,
mod_val,
calculation_max_area,
min_slider_h,
max_slider_h,
min_slider_w,
max_slider_w,
default_h,
default_w,
):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0:
return default_h, default_w
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
return new_h, new_w
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
"""
Handle image upload and calculate appropriate dimensions for video generation.
Args:
uploaded_pil_image: The uploaded image (PIL Image or numpy array)
current_h_val: Current height slider value
current_w_val: Current width slider value
Returns:
Tuple of gr.update objects for height and width sliders
"""
if uploaded_pil_image is None:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(
value=DEFAULT_W_SLIDER_VALUE
)
try:
# Convert numpy array to PIL Image if needed
if hasattr(uploaded_pil_image, "shape"): # numpy array
pil_image = Image.fromarray(uploaded_pil_image).convert("RGB")
else: # already PIL Image
pil_image = uploaded_pil_image
new_h, new_w = _calculate_new_dimensions_wan(
pil_image,
MOD_VALUE,
NEW_FORMULA_MAX_AREA,
SLIDER_MIN_H,
SLIDER_MAX_H,
SLIDER_MIN_W,
SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE,
DEFAULT_W_SLIDER_VALUE,
)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
gr.Warning("Error attempting to calculate new dimensions")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(
value=DEFAULT_W_SLIDER_VALUE
)
def get_duration(
image,
prompt,
negative_prompt,
height,
width,
duration_seconds,
sampling_steps,
guide_scale,
shift,
sample_solver,
seed,
offload_model,
progress,
):
"""Calculate dynamic GPU duration based on parameters."""
# Base values for duration calculation
BASE_FRAMES_HEIGHT_WIDTH = 81 * 832 * 480 # Base: 81 frames at 832x480
BASE_STEP_DURATION = 15 # Base duration per step in seconds
# Get dimensions from input parameters
if image is not None:
# If image is provided, use its dimensions
if hasattr(image, "shape"):
img_height, img_width = image.shape[:2]
else:
img_width, img_height = (
image.size if hasattr(image, "size") else (width, height)
)
# Use provided width/height if they're set, otherwise use image dimensions
actual_width = int(width) if width else img_width
actual_height = int(height) if height else img_height
else:
# Use provided resolution
actual_width = int(width) if width else DEFAULT_W_SLIDER_VALUE
actual_height = int(height) if height else DEFAULT_H_SLIDER_VALUE
# Calculate number of frames from duration
frames = int(round(duration_seconds * FIXED_FPS))
frames = max(MIN_FRAMES_MODEL, min(frames, MAX_FRAMES_MODEL))
# Ensure frame_num is 4n+1 for model compatibility
frames = ((frames - 1) // 4) * 4 + 1
# Calculate duration factor based on resolution and frames
factor = (frames * actual_width * actual_height) / BASE_FRAMES_HEIGHT_WIDTH
step_duration = BASE_STEP_DURATION * (factor**1.5)
# Return total duration in seconds (base overhead + steps * step_duration)
total_duration = 10 + int(sampling_steps) * step_duration
return total_duration
# --- 2. Gradio Inference Function ---
@spaces.GPU(duration=get_duration)
def generate_video(
image,
prompt,
negative_prompt,
height,
width,
duration_seconds,
sampling_steps=38,
guide_scale=None,
shift=None,
sample_solver="unipc",
seed=-1,
offload_model=True,
progress=gr.Progress(track_tqdm=True),
):
"""
Generate a video from text prompt and optional image using the Wan 2.2 TI2V model.
Args:
image: Optional input image (numpy array) for image-to-video generation
prompt: Text prompt describing the desired video
negative_prompt: Negative prompt for content exclusion
height: Target video height in pixels
width: Target video width in pixels
duration_seconds: Desired video duration in seconds
sampling_steps: Number of denoising steps for video generation
guide_scale: Guidance scale for classifier-free guidance
shift: Sample shift parameter for the model
sample_solver: Solver used to sample ('unipc' or 'dpm++')
seed: Random seed for reproducibility (-1 for random)
offload_model: Whether to offload models to CPU to save VRAM
progress: Gradio progress tracker
Returns:
Path to the generated video file
"""
if seed == -1:
seed = random.randint(0, sys.maxsize)
# Use default values from config if not provided
if guide_scale is None:
guide_scale = cfg.sample_guide_scale
if shift is None:
shift = cfg.sample_shift
# Ensure dimensions are multiples of MOD_VALUE
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
input_image = None
if image is not None:
input_image = Image.fromarray(image).convert("RGB")
# Resize image to match target dimensions
input_image = input_image.resize((target_w, target_h))
# Calculate number of frames based on duration
num_frames = np.clip(
int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL
)
# Ensure frame_num is 4n+1 for model compatibility
num_frames = ((num_frames - 1) // 4) * 4 + 1
num_frames = max(MIN_FRAMES_MODEL, min(num_frames, MAX_FRAMES_MODEL))
# Create size string for the pipeline
size_str = f"{target_h}*{target_w}"
# Use max_area for I2V, size for T2V
if input_image is not None:
# Image-to-video mode
max_area = MAX_AREA_CONFIGS.get(size_str, target_h * target_w)
video_tensor = pipeline.generate(
input_prompt=prompt,
img=input_image,
max_area=max_area,
frame_num=num_frames,
shift=shift,
sample_solver=sample_solver,
sampling_steps=int(sampling_steps),
guide_scale=guide_scale,
n_prompt=negative_prompt if negative_prompt else "",
seed=seed,
offload_model=offload_model,
)
else:
# Text-to-video mode
size = SIZE_CONFIGS.get(size_str, (target_h, target_w))
video_tensor = pipeline.generate(
input_prompt=prompt,
img=None,
size=size,
frame_num=num_frames,
shift=shift,
sample_solver=sample_solver,
sampling_steps=int(sampling_steps),
guide_scale=guide_scale,
n_prompt=negative_prompt if negative_prompt else "",
seed=seed,
offload_model=offload_model,
)
# Save the video to a temporary file
video_path = cache_video(
tensor=video_tensor[None], # Add a batch dimension
save_file=None, # cache_video will create a temp file
fps=cfg.sample_fps,
normalize=True,
value_range=(-1, 1),
)
del video_tensor
gc.collect()
return video_path
# --- 3. Gradio Interface ---
css = """
.gradio-container {max-width: 1200px !important; margin: 0 auto}
#output_video {height: 500px;}
#input_image {height: 500px;}
"""
with gr.Blocks() as demo:
gr.Markdown("# Wan 2.2 TI2V 5B - Text + Image to Video")
gr.Markdown(
"Generate high quality videos using **Wan 2.2 5B Text-Image-to-Video model**. "
"[[Model]](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B) | "
"[[Paper]](https://arxiv.org/abs/2503.20314)\n\n"
"**Features:**\n"
"- Text-to-Video: Generate videos from text prompts only\n"
"- Image-to-Video: Animate static images with text prompts\n"
"- Full control over generation parameters\n"
"- Support for UniPC and DPM++ solvers"
)
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(
type="numpy",
label="Input Image (Optional - leave blank for text-to-video)",
elem_id="input_image",
)
prompt_input = gr.Textbox(
label="Prompt",
value="A beautiful waterfall in a lush jungle, cinematic.",
lines=3,
placeholder="Describe the video you want to generate...",
)
negative_prompt_input = gr.Textbox(
label="Negative Prompt (Optional)",
value="",
lines=2,
placeholder="Describe what you want to avoid in the video...",
)
duration_input = gr.Slider(
minimum=round(MIN_FRAMES_MODEL / FIXED_FPS, 1),
maximum=round(MAX_FRAMES_MODEL / FIXED_FPS, 1),
step=0.1,
value=2.0,
label="Duration (seconds)",
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps. Frame count will be adjusted to 4n+1 format.",
)
with gr.Accordion("Video Resolution", open=False):
with gr.Row():
height_input = gr.Slider(
minimum=SLIDER_MIN_H,
maximum=SLIDER_MAX_H,
step=MOD_VALUE,
value=DEFAULT_H_SLIDER_VALUE,
label=f"Output Height (multiple of {MOD_VALUE})",
)
width_input = gr.Slider(
minimum=SLIDER_MIN_W,
maximum=SLIDER_MAX_W,
step=MOD_VALUE,
value=DEFAULT_W_SLIDER_VALUE,
label=f"Output Width (multiple of {MOD_VALUE})",
)
with gr.Accordion("Advanced Settings", open=False):
steps_input = gr.Slider(
label="Sampling Steps",
minimum=10,
maximum=50,
value=cfg.sample_steps,
step=1,
info="More steps = higher quality but slower generation",
)
scale_input = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=10.0,
value=cfg.sample_guide_scale,
step=0.1,
info="Controls how closely the model follows the prompt",
)
shift_input = gr.Slider(
label="Sample Shift",
minimum=1.0,
maximum=20.0,
value=cfg.sample_shift,
step=0.1,
info="Noise schedule shift parameter. Lower values (e.g., 3.0) recommended for 480p videos",
)
solver_input = gr.Radio(
label="Sample Solver",
choices=["unipc", "dpm++"],
value="unipc",
info="Solver algorithm for video generation",
)
seed_input = gr.Number(
label="Seed (-1 for random)",
value=-1,
precision=0,
info="Random seed for reproducibility",
)
offload_model_input = gr.Checkbox(
label="Offload Model to CPU",
value=True,
info="Reduces GPU memory usage but may be slower",
)
with gr.Column(scale=2):
video_output = gr.Video(label="Generated Video", elem_id="output_video")
run_button = gr.Button("Generate Video", variant="primary", size="lg")
# Add image upload handler
image_input.upload(
fn=handle_image_upload_for_dims_wan,
inputs=[image_input, height_input, width_input],
outputs=[height_input, width_input],
)
image_input.clear(
fn=handle_image_upload_for_dims_wan,
inputs=[image_input, height_input, width_input],
outputs=[height_input, width_input],
)
# Examples
example_image_path = os.path.join(
os.path.dirname(__file__), "examples/i2v_input.jpg"
)
if os.path.exists(example_image_path):
gr.Examples(
examples=[
[
example_image_path,
"The cat removes the glasses from its eyes.",
"",
1088,
800,
1.5,
],
[
None,
"A cinematic shot of a boat sailing on a calm sea at sunset.",
"",
704,
1280,
2.0,
],
[
None,
"Drone footage flying over a futuristic city with flying cars.",
"",
704,
1280,
2.0,
],
],
inputs=[
image_input,
prompt_input,
negative_prompt_input,
height_input,
width_input,
duration_input,
],
outputs=video_output,
fn=generate_video,
cache_examples=False,
)
run_button.click(
fn=generate_video,
inputs=[
image_input,
prompt_input,
negative_prompt_input,
height_input,
width_input,
duration_input,
steps_input,
scale_input,
shift_input,
solver_input,
seed_input,
offload_model_input,
],
outputs=video_output,
)
if __name__ == "__main__":
demo.launch(css=css)
|