rxpbtn21 commited on
Commit
10ba581
·
verified ·
1 Parent(s): 0c7a91f

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. app.py +26 -0
  2. requirements.txt +7 -0
app.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
4
+ from peft import PeftModel
5
+ import torch
6
+
7
+ # Load the tokenizer
8
+ tokenizer = AutoTokenizer.from_pretrained("rxpbtn21/t5-small-lora-summarizer")
9
+
10
+ # Load the base model and then the LoRA adapter
11
+ base_model = AutoModelForSeq2SeqLM.from_pretrained("t5-small", device_map="auto")
12
+ model = PeftModel.from_pretrained(base_model, "rxpbtn21/t5-small-lora-summarizer")
13
+ model.eval()
14
+
15
+ def summarize(text):
16
+ inputs = tokenizer(text, max_length=512, truncation=True, return_tensors="pt")
17
+ with torch.no_grad():
18
+ outputs = model.generate(inputs["input_ids"].to(model.device), num_beams=4, max_new_tokens=128, early_stopping=True)
19
+ summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
20
+ return summary
21
+
22
+ # Create Gradio interface
23
+ iface = gr.Interface(fn=summarize, inputs="text", outputs="text", title="LoRA Fine-tuned T5-small Summarizer")
24
+
25
+ # Launch the interface
26
+ iface.launch(share=False)
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+
2
+ torch
3
+ transformers
4
+ peft
5
+ accelerate
6
+ gradio
7
+ sentencepiece