Spaces:
Running
on
Zero
Running
on
Zero
Create app_lora.py
Browse files- app_lora.py +1091 -0
app_lora.py
ADDED
|
@@ -0,0 +1,1091 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import spaces
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import sys
|
| 5 |
+
import platform
|
| 6 |
+
import diffusers
|
| 7 |
+
import transformers
|
| 8 |
+
import psutil
|
| 9 |
+
import os
|
| 10 |
+
import time
|
| 11 |
+
import traceback
|
| 12 |
+
|
| 13 |
+
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
|
| 14 |
+
from diffusers import ZImagePipeline, AutoModel
|
| 15 |
+
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
|
| 16 |
+
latent_history = []
|
| 17 |
+
|
| 18 |
+
# ============================================================
|
| 19 |
+
# LOGGING BUFFER
|
| 20 |
+
# ============================================================
|
| 21 |
+
LOGS = ""
|
| 22 |
+
def log(msg):
|
| 23 |
+
global LOGS
|
| 24 |
+
print(msg)
|
| 25 |
+
LOGS += msg + "\n"
|
| 26 |
+
return msg
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# ============================================================
|
| 30 |
+
# SYSTEM METRICS — LIVE GPU + CPU MONITORING
|
| 31 |
+
# ============================================================
|
| 32 |
+
def log_system_stats(tag=""):
|
| 33 |
+
try:
|
| 34 |
+
log(f"\n===== 🔥 SYSTEM STATS {tag} =====")
|
| 35 |
+
|
| 36 |
+
# ============= GPU STATS =============
|
| 37 |
+
if torch.cuda.is_available():
|
| 38 |
+
allocated = torch.cuda.memory_allocated(0) / 1e9
|
| 39 |
+
reserved = torch.cuda.memory_reserved(0) / 1e9
|
| 40 |
+
total = torch.cuda.get_device_properties(0).total_memory / 1e9
|
| 41 |
+
free = total - allocated
|
| 42 |
+
|
| 43 |
+
log(f"💠 GPU Total : {total:.2f} GB")
|
| 44 |
+
log(f"💠 GPU Allocated : {allocated:.2f} GB")
|
| 45 |
+
log(f"💠 GPU Reserved : {reserved:.2f} GB")
|
| 46 |
+
log(f"💠 GPU Free : {free:.2f} GB")
|
| 47 |
+
|
| 48 |
+
# ============= CPU STATS ============
|
| 49 |
+
cpu = psutil.cpu_percent()
|
| 50 |
+
ram_used = psutil.virtual_memory().used / 1e9
|
| 51 |
+
ram_total = psutil.virtual_memory().total / 1e9
|
| 52 |
+
|
| 53 |
+
log(f"🧠 CPU Usage : {cpu}%")
|
| 54 |
+
log(f"🧠 RAM Used : {ram_used:.2f} GB / {ram_total:.2f} GB")
|
| 55 |
+
|
| 56 |
+
except Exception as e:
|
| 57 |
+
log(f"⚠️ Failed to log system stats: {e}")
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# ============================================================
|
| 61 |
+
# ENVIRONMENT INFO
|
| 62 |
+
# ============================================================
|
| 63 |
+
log("===================================================")
|
| 64 |
+
log("🔍 Z-IMAGE-TURBO DEBUGGING + LIVE METRIC LOGGER")
|
| 65 |
+
log("===================================================\n")
|
| 66 |
+
|
| 67 |
+
log(f"📌 PYTHON VERSION : {sys.version.replace(chr(10),' ')}")
|
| 68 |
+
log(f"📌 PLATFORM : {platform.platform()}")
|
| 69 |
+
log(f"📌 TORCH VERSION : {torch.__version__}")
|
| 70 |
+
log(f"📌 TRANSFORMERS VERSION : {transformers.__version__}")
|
| 71 |
+
log(f"📌 DIFFUSERS VERSION : {diffusers.__version__}")
|
| 72 |
+
log(f"📌 CUDA AVAILABLE : {torch.cuda.is_available()}")
|
| 73 |
+
|
| 74 |
+
log_system_stats("AT STARTUP")
|
| 75 |
+
|
| 76 |
+
if not torch.cuda.is_available():
|
| 77 |
+
raise RuntimeError("❌ CUDA Required")
|
| 78 |
+
|
| 79 |
+
device = "cuda"
|
| 80 |
+
gpu_id = 0
|
| 81 |
+
|
| 82 |
+
# ============================================================
|
| 83 |
+
# MODEL SETTINGS
|
| 84 |
+
# ============================================================
|
| 85 |
+
model_cache = "./weights/"
|
| 86 |
+
model_id = "Tongyi-MAI/Z-Image-Turbo"
|
| 87 |
+
torch_dtype = torch.bfloat16
|
| 88 |
+
USE_CPU_OFFLOAD = False
|
| 89 |
+
|
| 90 |
+
log("\n===================================================")
|
| 91 |
+
log("🧠 MODEL CONFIGURATION")
|
| 92 |
+
log("===================================================")
|
| 93 |
+
log(f"Model ID : {model_id}")
|
| 94 |
+
log(f"Model Cache Directory : {model_cache}")
|
| 95 |
+
log(f"torch_dtype : {torch_dtype}")
|
| 96 |
+
log(f"USE_CPU_OFFLOAD : {USE_CPU_OFFLOAD}")
|
| 97 |
+
|
| 98 |
+
log_system_stats("BEFORE TRANSFORMER LOAD")
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
# ============================================================
|
| 102 |
+
# FUNCTION TO CONVERT LATENTS TO IMAGE
|
| 103 |
+
# ============================================================
|
| 104 |
+
def latent_to_image(latent):
|
| 105 |
+
"""
|
| 106 |
+
Convert a latent tensor to a PIL image using pipe.vae
|
| 107 |
+
"""
|
| 108 |
+
try:
|
| 109 |
+
img_tensor = pipe.vae.decode(latent)
|
| 110 |
+
img_tensor = (img_tensor / 2 + 0.5).clamp(0, 1)
|
| 111 |
+
pil_img = T.ToPILImage()(img_tensor[0].cpu()) # <--- single image
|
| 112 |
+
return pil_img
|
| 113 |
+
except Exception as e:
|
| 114 |
+
log(f"⚠️ Failed to decode latent: {e}")
|
| 115 |
+
# fallback blank image
|
| 116 |
+
return Image.new("RGB", (latent.shape[-1]*8, latent.shape[-2]*8), color=(255,255,255))
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
# ============================================================
|
| 121 |
+
# SAFE TRANSFORMER INSPECTION
|
| 122 |
+
# ============================================================
|
| 123 |
+
def inspect_transformer(model, name):
|
| 124 |
+
log(f"\n🔍🔍 FULL TRANSFORMER DEBUG DUMP: {name}")
|
| 125 |
+
log("=" * 80)
|
| 126 |
+
|
| 127 |
+
try:
|
| 128 |
+
log(f"Model class : {model.__class__.__name__}")
|
| 129 |
+
log(f"DType : {getattr(model, 'dtype', 'unknown')}")
|
| 130 |
+
log(f"Device : {next(model.parameters()).device}")
|
| 131 |
+
log(f"Requires Grad? : {any(p.requires_grad for p in model.parameters())}")
|
| 132 |
+
|
| 133 |
+
# Check quantization
|
| 134 |
+
if hasattr(model, "is_loaded_in_4bit"):
|
| 135 |
+
log(f"4bit Quantization : {model.is_loaded_in_4bit}")
|
| 136 |
+
if hasattr(model, "is_loaded_in_8bit"):
|
| 137 |
+
log(f"8bit Quantization : {model.is_loaded_in_8bit}")
|
| 138 |
+
|
| 139 |
+
# Find blocks
|
| 140 |
+
candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
|
| 141 |
+
blocks = None
|
| 142 |
+
chosen_attr = None
|
| 143 |
+
|
| 144 |
+
for attr in candidates:
|
| 145 |
+
if hasattr(model, attr):
|
| 146 |
+
blocks = getattr(model, attr)
|
| 147 |
+
chosen_attr = attr
|
| 148 |
+
break
|
| 149 |
+
|
| 150 |
+
log(f"Block container attr : {chosen_attr}")
|
| 151 |
+
|
| 152 |
+
if blocks is None:
|
| 153 |
+
log("⚠️ No valid block container found.")
|
| 154 |
+
return
|
| 155 |
+
|
| 156 |
+
if not hasattr(blocks, "__len__"):
|
| 157 |
+
log("⚠️ Blocks exist but not iterable.")
|
| 158 |
+
return
|
| 159 |
+
|
| 160 |
+
total = len(blocks)
|
| 161 |
+
log(f"Total Blocks : {total}")
|
| 162 |
+
log("-" * 80)
|
| 163 |
+
|
| 164 |
+
# Inspect first N blocks
|
| 165 |
+
N = min(20, total)
|
| 166 |
+
for i in range(N):
|
| 167 |
+
block = blocks[i]
|
| 168 |
+
log(f"\n🧩 Block [{i}/{total-1}]")
|
| 169 |
+
log(f"Class: {block.__class__.__name__}")
|
| 170 |
+
|
| 171 |
+
# Print submodules
|
| 172 |
+
for n, m in block.named_children():
|
| 173 |
+
log(f" ├─ {n}: {m.__class__.__name__}")
|
| 174 |
+
|
| 175 |
+
# Print attention related
|
| 176 |
+
if hasattr(block, "attn"):
|
| 177 |
+
attn = block.attn
|
| 178 |
+
log(f" ├─ Attention: {attn.__class__.__name__}")
|
| 179 |
+
log(f" │ Heads : {getattr(attn, 'num_heads', 'unknown')}")
|
| 180 |
+
log(f" │ Dim : {getattr(attn, 'hidden_size', 'unknown')}")
|
| 181 |
+
log(f" │ Backend : {getattr(attn, 'attention_backend', 'unknown')}")
|
| 182 |
+
|
| 183 |
+
# Device + dtype info
|
| 184 |
+
try:
|
| 185 |
+
dev = next(block.parameters()).device
|
| 186 |
+
log(f" ├─ Device : {dev}")
|
| 187 |
+
except StopIteration:
|
| 188 |
+
pass
|
| 189 |
+
|
| 190 |
+
try:
|
| 191 |
+
dt = next(block.parameters()).dtype
|
| 192 |
+
log(f" ├─ DType : {dt}")
|
| 193 |
+
except StopIteration:
|
| 194 |
+
pass
|
| 195 |
+
|
| 196 |
+
log("\n🔚 END TRANSFORMER DEBUG DUMP")
|
| 197 |
+
log("=" * 80)
|
| 198 |
+
|
| 199 |
+
except Exception as e:
|
| 200 |
+
log(f"❌ ERROR IN INSPECTOR: {e}")
|
| 201 |
+
import torch
|
| 202 |
+
import time
|
| 203 |
+
|
| 204 |
+
# ---------- UTILITY ----------
|
| 205 |
+
def pretty_header(title):
|
| 206 |
+
log("\n\n" + "=" * 80)
|
| 207 |
+
log(f"🎛️ {title}")
|
| 208 |
+
log("=" * 80 + "\n")
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
# ---------- MEMORY ----------
|
| 212 |
+
def get_vram(prefix=""):
|
| 213 |
+
try:
|
| 214 |
+
allocated = torch.cuda.memory_allocated() / 1024**2
|
| 215 |
+
reserved = torch.cuda.memory_reserved() / 1024**2
|
| 216 |
+
log(f"{prefix}Allocated VRAM : {allocated:.2f} MB")
|
| 217 |
+
log(f"{prefix}Reserved VRAM : {reserved:.2f} MB")
|
| 218 |
+
except:
|
| 219 |
+
log(f"{prefix}VRAM: CUDA not available")
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
# ---------- MODULE INSPECT ----------
|
| 223 |
+
def inspect_module(name, module):
|
| 224 |
+
pretty_header(f"🔬 Inspecting {name}")
|
| 225 |
+
|
| 226 |
+
try:
|
| 227 |
+
log(f"📦 Class : {module.__class__.__name__}")
|
| 228 |
+
log(f"🔢 DType : {getattr(module, 'dtype', 'unknown')}")
|
| 229 |
+
log(f"💻 Device : {next(module.parameters()).device}")
|
| 230 |
+
log(f"🧮 Params : {sum(p.numel() for p in module.parameters()):,}")
|
| 231 |
+
|
| 232 |
+
# Quantization state
|
| 233 |
+
if hasattr(module, "is_loaded_in_4bit"):
|
| 234 |
+
log(f"⚙️ 4-bit QLoRA : {module.is_loaded_in_4bit}")
|
| 235 |
+
if hasattr(module, "is_loaded_in_8bit"):
|
| 236 |
+
log(f"⚙️ 8-bit load : {module.is_loaded_in_8bit}")
|
| 237 |
+
|
| 238 |
+
# Attention backend (DiT)
|
| 239 |
+
if hasattr(module, "set_attention_backend"):
|
| 240 |
+
try:
|
| 241 |
+
attn = getattr(module, "attention_backend", None)
|
| 242 |
+
log(f"🚀 Attention Backend: {attn}")
|
| 243 |
+
except:
|
| 244 |
+
pass
|
| 245 |
+
|
| 246 |
+
# Search for blocks
|
| 247 |
+
candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
|
| 248 |
+
blocks = None
|
| 249 |
+
chosen_attr = None
|
| 250 |
+
|
| 251 |
+
for attr in candidates:
|
| 252 |
+
if hasattr(module, attr):
|
| 253 |
+
blocks = getattr(module, attr)
|
| 254 |
+
chosen_attr = attr
|
| 255 |
+
break
|
| 256 |
+
|
| 257 |
+
log(f"\n📚 Block Container : {chosen_attr}")
|
| 258 |
+
|
| 259 |
+
if blocks is None:
|
| 260 |
+
log("⚠️ No block structure found")
|
| 261 |
+
return
|
| 262 |
+
|
| 263 |
+
if not hasattr(blocks, "__len__"):
|
| 264 |
+
log("⚠️ Blocks exist but are not iterable")
|
| 265 |
+
return
|
| 266 |
+
|
| 267 |
+
total = len(blocks)
|
| 268 |
+
log(f"🔢 Total Blocks : {total}\n")
|
| 269 |
+
|
| 270 |
+
# Inspect first 15 blocks
|
| 271 |
+
N = min(15, total)
|
| 272 |
+
|
| 273 |
+
for i in range(N):
|
| 274 |
+
blk = blocks[i]
|
| 275 |
+
log(f"\n🧩 Block [{i}/{total-1}] — {blk.__class__.__name__}")
|
| 276 |
+
|
| 277 |
+
for n, m in blk.named_children():
|
| 278 |
+
log(f" ├─ {n:<15} {m.__class__.__name__}")
|
| 279 |
+
|
| 280 |
+
# Attention details
|
| 281 |
+
if hasattr(blk, "attn"):
|
| 282 |
+
a = blk.attn
|
| 283 |
+
log(f" ├─ Attention")
|
| 284 |
+
log(f" │ Heads : {getattr(a, 'num_heads', 'unknown')}")
|
| 285 |
+
log(f" │ Dim : {getattr(a, 'hidden_size', 'unknown')}")
|
| 286 |
+
log(f" │ Backend : {getattr(a, 'attention_backend', 'unknown')}")
|
| 287 |
+
|
| 288 |
+
# Device / dtype
|
| 289 |
+
try:
|
| 290 |
+
log(f" ├─ Device : {next(blk.parameters()).device}")
|
| 291 |
+
log(f" ├─ DType : {next(blk.parameters()).dtype}")
|
| 292 |
+
except StopIteration:
|
| 293 |
+
pass
|
| 294 |
+
|
| 295 |
+
get_vram(" ▶ ")
|
| 296 |
+
|
| 297 |
+
except Exception as e:
|
| 298 |
+
log(f"❌ Module inspect error: {e}")
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
# ---------- LORA INSPECTION ----------
|
| 302 |
+
def inspect_loras(pipe):
|
| 303 |
+
pretty_header("🧩 LoRA ADAPTERS")
|
| 304 |
+
|
| 305 |
+
try:
|
| 306 |
+
if not hasattr(pipe, "lora_state_dict") and not hasattr(pipe, "adapter_names"):
|
| 307 |
+
log("⚠️ No LoRA system detected.")
|
| 308 |
+
return
|
| 309 |
+
|
| 310 |
+
if hasattr(pipe, "adapter_names"):
|
| 311 |
+
names = pipe.adapter_names
|
| 312 |
+
log(f"Available Adapters: {names}")
|
| 313 |
+
|
| 314 |
+
if hasattr(pipe, "active_adapters"):
|
| 315 |
+
log(f"Active Adapters : {pipe.active_adapters}")
|
| 316 |
+
|
| 317 |
+
if hasattr(pipe, "lora_scale"):
|
| 318 |
+
log(f"LoRA Scale : {pipe.lora_scale}")
|
| 319 |
+
|
| 320 |
+
# LoRA modules
|
| 321 |
+
if hasattr(pipe, "transformer") and hasattr(pipe.transformer, "modules"):
|
| 322 |
+
for name, module in pipe.transformer.named_modules():
|
| 323 |
+
if "lora" in name.lower():
|
| 324 |
+
log(f" 🔧 LoRA Module: {name} ({module.__class__.__name__})")
|
| 325 |
+
|
| 326 |
+
except Exception as e:
|
| 327 |
+
log(f"❌ LoRA inspect error: {e}")
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
# ---------- PIPELINE INSPECTOR ----------
|
| 331 |
+
def debug_pipeline(pipe):
|
| 332 |
+
pretty_header("🚀 FULL PIPELINE DEBUGGING")
|
| 333 |
+
|
| 334 |
+
try:
|
| 335 |
+
log(f"Pipeline Class : {pipe.__class__.__name__}")
|
| 336 |
+
log(f"Attention Impl : {getattr(pipe, 'attn_implementation', 'unknown')}")
|
| 337 |
+
log(f"Device : {pipe.device}")
|
| 338 |
+
except:
|
| 339 |
+
pass
|
| 340 |
+
|
| 341 |
+
get_vram("▶ ")
|
| 342 |
+
|
| 343 |
+
# Inspect TRANSFORMER
|
| 344 |
+
if hasattr(pipe, "transformer"):
|
| 345 |
+
inspect_module("Transformer", pipe.transformer)
|
| 346 |
+
|
| 347 |
+
# Inspect TEXT ENCODER
|
| 348 |
+
if hasattr(pipe, "text_encoder") and pipe.text_encoder is not None:
|
| 349 |
+
inspect_module("Text Encoder", pipe.text_encoder)
|
| 350 |
+
|
| 351 |
+
# Inspect UNET (if ZImage pipeline has it)
|
| 352 |
+
if hasattr(pipe, "unet"):
|
| 353 |
+
inspect_module("UNet", pipe.unet)
|
| 354 |
+
|
| 355 |
+
# LoRA adapters
|
| 356 |
+
inspect_loras(pipe)
|
| 357 |
+
|
| 358 |
+
pretty_header("🎉 END DEBUG REPORT")
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
# ============================================================
|
| 363 |
+
# LOAD TRANSFORMER — WITH LIVE STATS
|
| 364 |
+
# ============================================================
|
| 365 |
+
log("\n===================================================")
|
| 366 |
+
log("🔧 LOADING TRANSFORMER BLOCK")
|
| 367 |
+
log("===================================================")
|
| 368 |
+
|
| 369 |
+
log("📌 Logging memory before load:")
|
| 370 |
+
log_system_stats("START TRANSFORMER LOAD")
|
| 371 |
+
|
| 372 |
+
try:
|
| 373 |
+
quant_cfg = DiffusersBitsAndBytesConfig(
|
| 374 |
+
load_in_4bit=True,
|
| 375 |
+
bnb_4bit_quant_type="nf4",
|
| 376 |
+
bnb_4bit_compute_dtype=torch_dtype,
|
| 377 |
+
bnb_4bit_use_double_quant=True,
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
transformer = AutoModel.from_pretrained(
|
| 381 |
+
model_id,
|
| 382 |
+
cache_dir=model_cache,
|
| 383 |
+
subfolder="transformer",
|
| 384 |
+
quantization_config=quant_cfg,
|
| 385 |
+
torch_dtype=torch_dtype,
|
| 386 |
+
device_map=device,
|
| 387 |
+
)
|
| 388 |
+
log("✅ Transformer loaded successfully.")
|
| 389 |
+
|
| 390 |
+
except Exception as e:
|
| 391 |
+
log(f"❌ Transformer load failed: {e}")
|
| 392 |
+
transformer = None
|
| 393 |
+
|
| 394 |
+
log_system_stats("AFTER TRANSFORMER LOAD")
|
| 395 |
+
|
| 396 |
+
if transformer:
|
| 397 |
+
inspect_transformer(transformer, "Transformer")
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
# ============================================================
|
| 401 |
+
# LOAD TEXT ENCODER
|
| 402 |
+
# ============================================================
|
| 403 |
+
log("\n===================================================")
|
| 404 |
+
log("🔧 LOADING TEXT ENCODER")
|
| 405 |
+
log("===================================================")
|
| 406 |
+
|
| 407 |
+
log_system_stats("START TEXT ENCODER LOAD")
|
| 408 |
+
|
| 409 |
+
try:
|
| 410 |
+
quant_cfg2 = TransformersBitsAndBytesConfig(
|
| 411 |
+
load_in_4bit=True,
|
| 412 |
+
bnb_4bit_quant_type="nf4",
|
| 413 |
+
bnb_4bit_compute_dtype=torch_dtype,
|
| 414 |
+
bnb_4bit_use_double_quant=True,
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
text_encoder = AutoModel.from_pretrained(
|
| 418 |
+
model_id,
|
| 419 |
+
cache_dir=model_cache,
|
| 420 |
+
subfolder="text_encoder",
|
| 421 |
+
quantization_config=quant_cfg2,
|
| 422 |
+
torch_dtype=torch_dtype,
|
| 423 |
+
device_map=device,
|
| 424 |
+
)
|
| 425 |
+
log("✅ Text encoder loaded successfully.")
|
| 426 |
+
|
| 427 |
+
except Exception as e:
|
| 428 |
+
log(f"❌ Text encoder load failed: {e}")
|
| 429 |
+
text_encoder = None
|
| 430 |
+
|
| 431 |
+
log_system_stats("AFTER TEXT ENCODER LOAD")
|
| 432 |
+
|
| 433 |
+
if text_encoder:
|
| 434 |
+
inspect_transformer(text_encoder, "Text Encoder")
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
# ============================================================
|
| 438 |
+
# BUILD PIPELINE
|
| 439 |
+
# ============================================================
|
| 440 |
+
log("\n===================================================")
|
| 441 |
+
log("🔧 BUILDING PIPELINE")
|
| 442 |
+
log("===================================================")
|
| 443 |
+
|
| 444 |
+
log_system_stats("START PIPELINE BUILD")
|
| 445 |
+
|
| 446 |
+
try:
|
| 447 |
+
pipe = ZImagePipeline.from_pretrained(
|
| 448 |
+
model_id,
|
| 449 |
+
transformer=transformer,
|
| 450 |
+
text_encoder=text_encoder,
|
| 451 |
+
torch_dtype=torch_dtype,
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
+
# Prefer flash attention if supported
|
| 455 |
+
try:
|
| 456 |
+
if hasattr(pipe, "transformer") and hasattr(pipe.transformer, "set_attention_backend"):
|
| 457 |
+
pipe.transformer.set_attention_backend("_flash_3")
|
| 458 |
+
log("✅ transformer.set_attention_backend('_flash_3') called")
|
| 459 |
+
except Exception as _e:
|
| 460 |
+
log(f"⚠️ set_attention_backend failed: {_e}")
|
| 461 |
+
|
| 462 |
+
# 🚫 NO default LoRA here
|
| 463 |
+
# 🚫 NO fuse
|
| 464 |
+
# 🚫 NO unload
|
| 465 |
+
|
| 466 |
+
pipe.to("cuda")
|
| 467 |
+
log("✅ Pipeline built successfully.")
|
| 468 |
+
LOGS += log("Pipeline build completed.") + "\n"
|
| 469 |
+
|
| 470 |
+
except Exception as e:
|
| 471 |
+
log(f"❌ Pipeline build failed: {e}")
|
| 472 |
+
log(traceback.format_exc())
|
| 473 |
+
pipe = None
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
log_system_stats("AFTER PIPELINE BUILD")
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
# -----------------------------
|
| 480 |
+
# Monkey-patch prepare_latents (safe)
|
| 481 |
+
# -----------------------------
|
| 482 |
+
if pipe is not None and hasattr(pipe, "prepare_latents"):
|
| 483 |
+
original_prepare_latents = pipe.prepare_latents
|
| 484 |
+
|
| 485 |
+
def logged_prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
| 486 |
+
try:
|
| 487 |
+
result_latents = original_prepare_latents(batch_size, num_channels_latents, height, width, dtype, device, generator, latents)
|
| 488 |
+
log_msg = f"🔹 prepare_latents called | shape={result_latents.shape}, dtype={result_latents.dtype}, device={result_latents.device}"
|
| 489 |
+
if hasattr(self, "_latents_log"):
|
| 490 |
+
self._latents_log.append(log_msg)
|
| 491 |
+
else:
|
| 492 |
+
self._latents_log = [log_msg]
|
| 493 |
+
return result_latents
|
| 494 |
+
except Exception as e:
|
| 495 |
+
log(f"⚠️ prepare_latents wrapper failed: {e}")
|
| 496 |
+
raise
|
| 497 |
+
|
| 498 |
+
# apply patch safely
|
| 499 |
+
try:
|
| 500 |
+
pipe.prepare_latents = logged_prepare_latents.__get__(pipe)
|
| 501 |
+
log("✅ prepare_latents monkey-patched")
|
| 502 |
+
except Exception as e:
|
| 503 |
+
log(f"⚠️ Failed to attach prepare_latents patch: {e}")
|
| 504 |
+
else:
|
| 505 |
+
log("❌ WARNING: Pipe not initialized or prepare_latents missing; skipping prepare_latents patch")
|
| 506 |
+
|
| 507 |
+
|
| 508 |
+
from PIL import Image
|
| 509 |
+
import torch
|
| 510 |
+
|
| 511 |
+
# --------------------------
|
| 512 |
+
# Helper: Safe latent extractor
|
| 513 |
+
# --------------------------
|
| 514 |
+
def safe_get_latents(pipe, height, width, generator, device, LOGS):
|
| 515 |
+
"""
|
| 516 |
+
Safely prepare latents for any ZImagePipeline variant.
|
| 517 |
+
Returns latents tensor, logs issues instead of failing.
|
| 518 |
+
"""
|
| 519 |
+
try:
|
| 520 |
+
# Determine number of channels
|
| 521 |
+
num_channels = 4 # default fallback
|
| 522 |
+
if hasattr(pipe, "unet") and hasattr(pipe.unet, "in_channels"):
|
| 523 |
+
num_channels = pipe.unet.in_channels
|
| 524 |
+
elif hasattr(pipe, "vae") and hasattr(pipe.vae, "latent_channels"):
|
| 525 |
+
num_channels = pipe.vae.latent_channels # some pipelines define this
|
| 526 |
+
LOGS.append(f"🔹 Using num_channels={num_channels} for latents")
|
| 527 |
+
|
| 528 |
+
latents = pipe.prepare_latents(
|
| 529 |
+
batch_size=1,
|
| 530 |
+
num_channels_latents=num_channels,
|
| 531 |
+
height=height,
|
| 532 |
+
width=width,
|
| 533 |
+
dtype=torch.float32,
|
| 534 |
+
device=device,
|
| 535 |
+
generator=generator,
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
LOGS.append(f"🔹 Latents shape: {latents.shape}, dtype: {latents.dtype}, device: {latents.device}")
|
| 539 |
+
return latents
|
| 540 |
+
except Exception as e:
|
| 541 |
+
LOGS.append(f"⚠️ Latent extraction failed: {e}")
|
| 542 |
+
# fallback: guess a safe shape
|
| 543 |
+
fallback_channels = 16 # try standard default for ZImage pipelines
|
| 544 |
+
latents = torch.randn((1, fallback_channels, height // 8, width // 8),
|
| 545 |
+
generator=generator, device=device)
|
| 546 |
+
LOGS.append(f"🔹 Using fallback random latents shape: {latents.shape}")
|
| 547 |
+
return latents
|
| 548 |
+
|
| 549 |
+
# --------------------------
|
| 550 |
+
# Main generation function (kept exactly as your logic)
|
| 551 |
+
# --------------------------
|
| 552 |
+
from huggingface_hub import HfApi, HfFolder
|
| 553 |
+
import torch
|
| 554 |
+
import os
|
| 555 |
+
|
| 556 |
+
HF_REPO_ID = "rahul7star/Zstudio-latent" # Model repo
|
| 557 |
+
HF_TOKEN = HfFolder.get_token() # Make sure you are logged in via `huggingface-cli login`
|
| 558 |
+
|
| 559 |
+
def upload_latents_to_hf(latent_dict, filename="latents.pt"):
|
| 560 |
+
local_path = f"/tmp/{filename}"
|
| 561 |
+
torch.save(latent_dict, local_path)
|
| 562 |
+
try:
|
| 563 |
+
api = HfApi()
|
| 564 |
+
api.upload_file(
|
| 565 |
+
path_or_fileobj=local_path,
|
| 566 |
+
path_in_repo=filename,
|
| 567 |
+
repo_id=HF_REPO_ID,
|
| 568 |
+
token=HF_TOKEN,
|
| 569 |
+
repo_type="model" # since this is a model repo
|
| 570 |
+
)
|
| 571 |
+
os.remove(local_path)
|
| 572 |
+
return f"https://huggingface.co/{HF_REPO_ID}/resolve/main/{filename}"
|
| 573 |
+
except Exception as e:
|
| 574 |
+
os.remove(local_path)
|
| 575 |
+
raise e
|
| 576 |
+
|
| 577 |
+
|
| 578 |
+
|
| 579 |
+
import asyncio
|
| 580 |
+
import torch
|
| 581 |
+
from PIL import Image
|
| 582 |
+
|
| 583 |
+
async def async_upload_latents(latent_dict, filename, LOGS):
|
| 584 |
+
try:
|
| 585 |
+
hf_url = await upload_latents_to_hf(latent_dict, filename=filename) # assume this can be async
|
| 586 |
+
LOGS.append(f"🔹 All preview latents uploaded: {hf_url}")
|
| 587 |
+
except Exception as e:
|
| 588 |
+
LOGS.append(f"⚠️ Failed to upload all preview latents: {e}")
|
| 589 |
+
|
| 590 |
+
|
| 591 |
+
# this code genetae all frame for latest GPU expseinve bt decide fails sp use this later
|
| 592 |
+
@spaces.GPU
|
| 593 |
+
def generate_image_all_latents(prompt, height, width, steps, seed, guidance_scale=0.0):
|
| 594 |
+
LOGS = []
|
| 595 |
+
device = "cpu" # FORCE CPU
|
| 596 |
+
generator = torch.Generator(device).manual_seed(int(seed))
|
| 597 |
+
|
| 598 |
+
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
|
| 599 |
+
latent_gallery = []
|
| 600 |
+
final_gallery = []
|
| 601 |
+
|
| 602 |
+
last_four_latents = [] # we only upload 4
|
| 603 |
+
|
| 604 |
+
# --------------------------------------------------
|
| 605 |
+
# LATENT PREVIEW GENERATION (CPU MODE)
|
| 606 |
+
# --------------------------------------------------
|
| 607 |
+
try:
|
| 608 |
+
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
|
| 609 |
+
latents = latents.to("cpu") # keep EVERYTHING CPU
|
| 610 |
+
|
| 611 |
+
timestep_count = len(pipe.scheduler.timesteps)
|
| 612 |
+
preview_every = max(1, timestep_count // 10)
|
| 613 |
+
|
| 614 |
+
for i, t in enumerate(pipe.scheduler.timesteps):
|
| 615 |
+
|
| 616 |
+
# -------------- decode latent preview --------------
|
| 617 |
+
try:
|
| 618 |
+
with torch.no_grad():
|
| 619 |
+
latent_cpu = latents.to(pipe.vae.dtype) # match VAE dtype
|
| 620 |
+
decoded = pipe.vae.decode(latent_cpu).sample # [1,3,H,W]
|
| 621 |
+
decoded = (decoded / 2 + 0.5).clamp(0, 1)
|
| 622 |
+
decoded = decoded[0].permute(1,2,0).cpu().numpy()
|
| 623 |
+
latent_img = Image.fromarray((decoded * 255).astype("uint8"))
|
| 624 |
+
except Exception:
|
| 625 |
+
latent_img = placeholder
|
| 626 |
+
LOGS.append("⚠️ Latent preview decode failed.")
|
| 627 |
+
|
| 628 |
+
latent_gallery.append(latent_img)
|
| 629 |
+
|
| 630 |
+
# store last 4 latent states
|
| 631 |
+
if len(last_four_latents) >= 4:
|
| 632 |
+
last_four_latents.pop(0)
|
| 633 |
+
last_four_latents.append(latents.cpu().clone())
|
| 634 |
+
|
| 635 |
+
# UI preview yields
|
| 636 |
+
if i % preview_every == 0:
|
| 637 |
+
yield None, latent_gallery, LOGS
|
| 638 |
+
|
| 639 |
+
# --------------------------------------------------
|
| 640 |
+
# UPLOAD LAST 4 LATENTS (SYNC)
|
| 641 |
+
# --------------------------------------------------
|
| 642 |
+
try:
|
| 643 |
+
upload_dict = {
|
| 644 |
+
"last_4_latents": last_four_latents,
|
| 645 |
+
"prompt": prompt,
|
| 646 |
+
"seed": seed
|
| 647 |
+
}
|
| 648 |
+
|
| 649 |
+
hf_url = upload_latents_to_hf(
|
| 650 |
+
upload_dict,
|
| 651 |
+
filename=f"latents_last4_{seed}.pt"
|
| 652 |
+
)
|
| 653 |
+
|
| 654 |
+
LOGS.append(f"🔹 Uploaded last 4 latents: {hf_url}")
|
| 655 |
+
|
| 656 |
+
except Exception as e:
|
| 657 |
+
LOGS.append(f"⚠️ Failed to upload latents: {e}")
|
| 658 |
+
|
| 659 |
+
except Exception as e:
|
| 660 |
+
LOGS.append(f"⚠️ Latent generation failed: {e}")
|
| 661 |
+
latent_gallery.append(placeholder)
|
| 662 |
+
yield None, latent_gallery, LOGS
|
| 663 |
+
|
| 664 |
+
# --------------------------------------------------
|
| 665 |
+
# FINAL IMAGE - UNTOUCHED
|
| 666 |
+
# --------------------------------------------------
|
| 667 |
+
try:
|
| 668 |
+
output = pipe(
|
| 669 |
+
prompt=prompt,
|
| 670 |
+
height=height,
|
| 671 |
+
width=width,
|
| 672 |
+
num_inference_steps=steps,
|
| 673 |
+
guidance_scale=guidance_scale,
|
| 674 |
+
generator=generator,
|
| 675 |
+
)
|
| 676 |
+
final_img = output.images[0]
|
| 677 |
+
LOGS.append("✅ Standard pipeline succeeded.")
|
| 678 |
+
|
| 679 |
+
yield final_img, latent_gallery, LOGS
|
| 680 |
+
|
| 681 |
+
except Exception as e2:
|
| 682 |
+
LOGS.append(f"❌ Standard pipeline failed: {e2}")
|
| 683 |
+
yield placeholder, latent_gallery, LOGS
|
| 684 |
+
|
| 685 |
+
@spaces.GPU
|
| 686 |
+
def generate_image(prompt, height, width, steps, seed, guidance_scale=0.0):
|
| 687 |
+
LOGS = []
|
| 688 |
+
device = "cuda"
|
| 689 |
+
cpu_device = "cpu"
|
| 690 |
+
generator = torch.Generator(device).manual_seed(int(seed))
|
| 691 |
+
|
| 692 |
+
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
|
| 693 |
+
latent_gallery = []
|
| 694 |
+
final_gallery = []
|
| 695 |
+
|
| 696 |
+
last_latents = [] # store last 5 preview latents on CPU
|
| 697 |
+
|
| 698 |
+
try:
|
| 699 |
+
# --- Initial latents ---
|
| 700 |
+
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
|
| 701 |
+
latents = latents.float().to(cpu_device) # move to CPU
|
| 702 |
+
|
| 703 |
+
num_previews = min(10, steps)
|
| 704 |
+
preview_indices = torch.linspace(0, steps - 1, num_previews).long()
|
| 705 |
+
|
| 706 |
+
for i, step_idx in enumerate(preview_indices):
|
| 707 |
+
try:
|
| 708 |
+
with torch.no_grad():
|
| 709 |
+
# --- Z-Image Turbo-style denoise simulation ---
|
| 710 |
+
t = 1.0 - (i / num_previews) # linear decay [1.0 -> 0.0]
|
| 711 |
+
noise_scale = t ** 0.5 # reduce noise over steps (sqrt for smoother)
|
| 712 |
+
denoise_latent = latents * t + torch.randn_like(latents) * noise_scale
|
| 713 |
+
|
| 714 |
+
# Move to VAE device & dtype
|
| 715 |
+
denoise_latent = denoise_latent.to(pipe.vae.device).to(pipe.vae.dtype)
|
| 716 |
+
|
| 717 |
+
# Decode latent to image
|
| 718 |
+
decoded = pipe.vae.decode(denoise_latent, return_dict=False)[0]
|
| 719 |
+
decoded = (decoded / 2 + 0.5).clamp(0, 1)
|
| 720 |
+
decoded = decoded.cpu().permute(0, 2, 3, 1).float().numpy()
|
| 721 |
+
decoded = (decoded * 255).round().astype("uint8")
|
| 722 |
+
latent_img = Image.fromarray(decoded[0])
|
| 723 |
+
|
| 724 |
+
except Exception as e:
|
| 725 |
+
LOGS.append(f"⚠️ Latent preview decode failed: {e}")
|
| 726 |
+
latent_img = placeholder
|
| 727 |
+
|
| 728 |
+
latent_gallery.append(latent_img)
|
| 729 |
+
|
| 730 |
+
# Keep last 5 latents only
|
| 731 |
+
last_latents.append(denoise_latent.cpu().clone())
|
| 732 |
+
if len(last_latents) > 5:
|
| 733 |
+
last_latents.pop(0)
|
| 734 |
+
|
| 735 |
+
# Show only last 5 previews in UI
|
| 736 |
+
yield None, latent_gallery[-5:], LOGS
|
| 737 |
+
|
| 738 |
+
# Optionally: upload last 5 latents
|
| 739 |
+
# latent_dict = {"latents": last_latents, "prompt": prompt, "seed": seed}
|
| 740 |
+
# hf_url = upload_latents_to_hf(latent_dict, filename=f"latents_last5_{seed}.pt")
|
| 741 |
+
# LOGS.append(f"🔹 Last 5 latents uploaded: {hf_url}")
|
| 742 |
+
|
| 743 |
+
except Exception as e:
|
| 744 |
+
LOGS.append(f"⚠️ Latent generation failed: {e}")
|
| 745 |
+
latent_gallery.append(placeholder)
|
| 746 |
+
yield None, latent_gallery[-5:], LOGS
|
| 747 |
+
|
| 748 |
+
# --- Final image on GPU ---
|
| 749 |
+
try:
|
| 750 |
+
output = pipe(
|
| 751 |
+
prompt=prompt,
|
| 752 |
+
height=height,
|
| 753 |
+
width=width,
|
| 754 |
+
num_inference_steps=steps,
|
| 755 |
+
guidance_scale=guidance_scale,
|
| 756 |
+
generator=generator,
|
| 757 |
+
)
|
| 758 |
+
final_img = output.images[0]
|
| 759 |
+
final_gallery.append(final_img)
|
| 760 |
+
latent_gallery.append(final_img)
|
| 761 |
+
LOGS.append("✅ Standard pipeline succeeded.")
|
| 762 |
+
yield final_img, latent_gallery[-5:] + [final_img], LOGS # last 5 previews + final
|
| 763 |
+
|
| 764 |
+
except Exception as e2:
|
| 765 |
+
LOGS.append(f"❌ Standard pipeline failed: {e2}")
|
| 766 |
+
final_gallery.append(placeholder)
|
| 767 |
+
latent_gallery.append(placeholder)
|
| 768 |
+
yield placeholder, latent_gallery[-5:] + [placeholder], LOGS
|
| 769 |
+
|
| 770 |
+
|
| 771 |
+
|
| 772 |
+
# this is astable vesopn tha can gen final and a noise to latent
|
| 773 |
+
@spaces.GPU
|
| 774 |
+
def generate_image_verygood_realnoise(prompt, height, width, steps, seed, guidance_scale=0.0):
|
| 775 |
+
LOGS = []
|
| 776 |
+
device = "cuda"
|
| 777 |
+
generator = torch.Generator(device).manual_seed(int(seed))
|
| 778 |
+
|
| 779 |
+
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
|
| 780 |
+
latent_gallery = []
|
| 781 |
+
final_gallery = []
|
| 782 |
+
|
| 783 |
+
# --- Generate latent previews ---
|
| 784 |
+
try:
|
| 785 |
+
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
|
| 786 |
+
latents = latents.float() # keep float32 until decode
|
| 787 |
+
|
| 788 |
+
num_previews = min(10, steps)
|
| 789 |
+
preview_steps = torch.linspace(0, 1, num_previews)
|
| 790 |
+
|
| 791 |
+
for alpha in preview_steps:
|
| 792 |
+
try:
|
| 793 |
+
with torch.no_grad():
|
| 794 |
+
# Simulate denoising progression like Z-Image Turbo
|
| 795 |
+
preview_latent = latents * alpha + latents * 0 # optional: simple progression
|
| 796 |
+
|
| 797 |
+
# Move to same device and dtype as VAE
|
| 798 |
+
preview_latent = preview_latent.to(pipe.vae.device).to(pipe.vae.dtype)
|
| 799 |
+
|
| 800 |
+
# Decode
|
| 801 |
+
decoded = pipe.vae.decode(preview_latent, return_dict=False)[0]
|
| 802 |
+
|
| 803 |
+
# Convert to PIL following same logic as final image
|
| 804 |
+
decoded = (decoded / 2 + 0.5).clamp(0, 1)
|
| 805 |
+
decoded = decoded.cpu().permute(0, 2, 3, 1).float().numpy()
|
| 806 |
+
decoded = (decoded * 255).round().astype("uint8")
|
| 807 |
+
latent_img = Image.fromarray(decoded[0])
|
| 808 |
+
|
| 809 |
+
except Exception as e:
|
| 810 |
+
LOGS.append(f"⚠️ Latent preview decode failed: {e}")
|
| 811 |
+
latent_img = placeholder
|
| 812 |
+
|
| 813 |
+
latent_gallery.append(latent_img)
|
| 814 |
+
yield None, latent_gallery, LOGS
|
| 815 |
+
|
| 816 |
+
except Exception as e:
|
| 817 |
+
LOGS.append(f"⚠️ Latent generation failed: {e}")
|
| 818 |
+
latent_gallery.append(placeholder)
|
| 819 |
+
yield None, latent_gallery, LOGS
|
| 820 |
+
|
| 821 |
+
# --- Final image: untouched ---
|
| 822 |
+
try:
|
| 823 |
+
output = pipe(
|
| 824 |
+
prompt=prompt,
|
| 825 |
+
height=height,
|
| 826 |
+
width=width,
|
| 827 |
+
num_inference_steps=steps,
|
| 828 |
+
guidance_scale=guidance_scale,
|
| 829 |
+
generator=generator,
|
| 830 |
+
)
|
| 831 |
+
final_img = output.images[0]
|
| 832 |
+
final_gallery.append(final_img)
|
| 833 |
+
latent_gallery.append(final_img) # fallback preview
|
| 834 |
+
LOGS.append("✅ Standard pipeline succeeded.")
|
| 835 |
+
yield final_img, latent_gallery, LOGS
|
| 836 |
+
|
| 837 |
+
except Exception as e2:
|
| 838 |
+
LOGS.append(f"❌ Standard pipeline failed: {e2}")
|
| 839 |
+
final_gallery.append(placeholder)
|
| 840 |
+
latent_gallery.append(placeholder)
|
| 841 |
+
yield placeholder, latent_gallery, LOGS
|
| 842 |
+
|
| 843 |
+
|
| 844 |
+
|
| 845 |
+
|
| 846 |
+
# DO NOT TOUCH this is astable vesopn tha can gen final and a noise to latent with latent upload to repo
|
| 847 |
+
@spaces.GPU
|
| 848 |
+
def generate_image_safe(prompt, height, width, steps, seed, guidance_scale=0.0):
|
| 849 |
+
LOGS = []
|
| 850 |
+
device = "cuda"
|
| 851 |
+
generator = torch.Generator(device).manual_seed(int(seed))
|
| 852 |
+
|
| 853 |
+
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
|
| 854 |
+
latent_gallery = []
|
| 855 |
+
final_gallery = []
|
| 856 |
+
|
| 857 |
+
# --- Generate latent previews in a loop ---
|
| 858 |
+
try:
|
| 859 |
+
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
|
| 860 |
+
|
| 861 |
+
# Convert latents to float32 if necessary
|
| 862 |
+
if latents.dtype != torch.float32:
|
| 863 |
+
latents = latents.float()
|
| 864 |
+
|
| 865 |
+
# Loop for multiple previews before final image
|
| 866 |
+
num_previews = min(10, steps) # show ~10 previews
|
| 867 |
+
preview_steps = torch.linspace(0, 1, num_previews)
|
| 868 |
+
|
| 869 |
+
for i, alpha in enumerate(preview_steps):
|
| 870 |
+
try:
|
| 871 |
+
with torch.no_grad():
|
| 872 |
+
# Simple noise interpolation for preview (simulate denoising progress)
|
| 873 |
+
preview_latent = latents * alpha + torch.randn_like(latents) * (1 - alpha)
|
| 874 |
+
# Decode to PIL
|
| 875 |
+
latent_img_tensor = pipe.vae.decode(preview_latent).sample # [1,3,H,W]
|
| 876 |
+
latent_img_tensor = (latent_img_tensor / 2 + 0.5).clamp(0, 1)
|
| 877 |
+
latent_img_tensor = latent_img_tensor.cpu().permute(0, 2, 3, 1)[0]
|
| 878 |
+
latent_img = Image.fromarray((latent_img_tensor.numpy() * 255).astype('uint8'))
|
| 879 |
+
except Exception as e:
|
| 880 |
+
LOGS.append(f"⚠️ Latent preview decode failed: {e}")
|
| 881 |
+
latent_img = placeholder
|
| 882 |
+
|
| 883 |
+
latent_gallery.append(latent_img)
|
| 884 |
+
yield None, latent_gallery, LOGS # update Gradio with intermediate preview
|
| 885 |
+
|
| 886 |
+
# Save final latents to HF
|
| 887 |
+
latent_dict = {"latents": latents.cpu(), "prompt": prompt, "seed": seed}
|
| 888 |
+
try:
|
| 889 |
+
hf_url = upload_latents_to_hf(latent_dict, filename=f"latents_{seed}.pt")
|
| 890 |
+
LOGS.append(f"🔹 Latents uploaded: {hf_url}")
|
| 891 |
+
except Exception as e:
|
| 892 |
+
LOGS.append(f"⚠️ Failed to upload latents: {e}")
|
| 893 |
+
|
| 894 |
+
except Exception as e:
|
| 895 |
+
LOGS.append(f"⚠️ Latent generation failed: {e}")
|
| 896 |
+
latent_gallery.append(placeholder)
|
| 897 |
+
yield None, latent_gallery, LOGS
|
| 898 |
+
|
| 899 |
+
# --- Final image: untouched standard pipeline ---
|
| 900 |
+
try:
|
| 901 |
+
output = pipe(
|
| 902 |
+
prompt=prompt,
|
| 903 |
+
height=height,
|
| 904 |
+
width=width,
|
| 905 |
+
num_inference_steps=steps,
|
| 906 |
+
guidance_scale=guidance_scale,
|
| 907 |
+
generator=generator,
|
| 908 |
+
)
|
| 909 |
+
final_img = output.images[0]
|
| 910 |
+
final_gallery.append(final_img)
|
| 911 |
+
latent_gallery.append(final_img) # fallback preview if needed
|
| 912 |
+
LOGS.append("✅ Standard pipeline succeeded.")
|
| 913 |
+
yield final_img, latent_gallery, LOGS
|
| 914 |
+
|
| 915 |
+
except Exception as e2:
|
| 916 |
+
LOGS.append(f"❌ Standard pipeline failed: {e2}")
|
| 917 |
+
final_gallery.append(placeholder)
|
| 918 |
+
latent_gallery.append(placeholder)
|
| 919 |
+
yield placeholder, latent_gallery, LOGS
|
| 920 |
+
|
| 921 |
+
|
| 922 |
+
|
| 923 |
+
|
| 924 |
+
|
| 925 |
+
|
| 926 |
+
|
| 927 |
+
import gradio as gr
|
| 928 |
+
|
| 929 |
+
with gr.Blocks(title="Z-Image-Turbo") as demo:
|
| 930 |
+
gr.Markdown("# 🎨 Z-Image-Turbo (LoRA-enabled UI)")
|
| 931 |
+
|
| 932 |
+
# =========================
|
| 933 |
+
# MAIN TABS
|
| 934 |
+
# =========================
|
| 935 |
+
with gr.Tabs():
|
| 936 |
+
|
| 937 |
+
# -------- Image Tab --------
|
| 938 |
+
with gr.TabItem("Image & Latents"):
|
| 939 |
+
with gr.Row():
|
| 940 |
+
with gr.Column(scale=1):
|
| 941 |
+
prompt = gr.Textbox(
|
| 942 |
+
label="Prompt",
|
| 943 |
+
value="boat in Ocean"
|
| 944 |
+
)
|
| 945 |
+
height = gr.Slider(
|
| 946 |
+
256, 2048, value=1024, step=8, label="Height"
|
| 947 |
+
)
|
| 948 |
+
width = gr.Slider(
|
| 949 |
+
256, 2048, value=1024, step=8, label="Width"
|
| 950 |
+
)
|
| 951 |
+
steps = gr.Slider(
|
| 952 |
+
1, 50, value=20, step=1, label="Inference Steps"
|
| 953 |
+
)
|
| 954 |
+
seed = gr.Number(
|
| 955 |
+
value=42, label="Seed"
|
| 956 |
+
)
|
| 957 |
+
run_btn = gr.Button("🚀 Generate Image")
|
| 958 |
+
|
| 959 |
+
with gr.Column(scale=1):
|
| 960 |
+
final_image = gr.Image(label="Final Image")
|
| 961 |
+
latent_gallery = gr.Gallery(
|
| 962 |
+
label="Latent Steps",
|
| 963 |
+
columns=4,
|
| 964 |
+
height=256,
|
| 965 |
+
preview=True,
|
| 966 |
+
)
|
| 967 |
+
|
| 968 |
+
# -------- Logs Tab --------
|
| 969 |
+
with gr.TabItem("Logs"):
|
| 970 |
+
logs_box = gr.Textbox(
|
| 971 |
+
label="Logs",
|
| 972 |
+
lines=25,
|
| 973 |
+
interactive=False
|
| 974 |
+
)
|
| 975 |
+
|
| 976 |
+
# =========================
|
| 977 |
+
# LoRA CONTROLS
|
| 978 |
+
# =========================
|
| 979 |
+
gr.Markdown("## 🧩 LoRA Controls")
|
| 980 |
+
|
| 981 |
+
with gr.Row():
|
| 982 |
+
lora_repo = gr.Textbox(
|
| 983 |
+
label="LoRA Repo (HF)",
|
| 984 |
+
value="rahul7star/ZImageLora",
|
| 985 |
+
placeholder="username/repo"
|
| 986 |
+
)
|
| 987 |
+
|
| 988 |
+
lora_file = gr.Dropdown(
|
| 989 |
+
label="LoRA file (.safetensors)",
|
| 990 |
+
choices=[]
|
| 991 |
+
)
|
| 992 |
+
|
| 993 |
+
lora_strength = gr.Slider(
|
| 994 |
+
0.0, 2.0, value=1.0, step=0.05, label="LoRA strength"
|
| 995 |
+
)
|
| 996 |
+
|
| 997 |
+
with gr.Row():
|
| 998 |
+
refresh_lora_btn = gr.Button("🔄 Refresh LoRA List")
|
| 999 |
+
apply_lora_btn = gr.Button("✅ Apply LoRA")
|
| 1000 |
+
clear_lora_btn = gr.Button("❌ Clear LoRA")
|
| 1001 |
+
|
| 1002 |
+
# =========================
|
| 1003 |
+
# CALLBACKS
|
| 1004 |
+
# =========================
|
| 1005 |
+
|
| 1006 |
+
|
| 1007 |
+
def refresh_lora_list(repo_name):
|
| 1008 |
+
try:
|
| 1009 |
+
files = list_loras_from_repo(repo_name)
|
| 1010 |
+
if not files:
|
| 1011 |
+
log(f"⚠️ No LoRA files found in {repo_name}")
|
| 1012 |
+
return gr.update(choices=[], value=None)
|
| 1013 |
+
|
| 1014 |
+
log(f"📦 Found {len(files)} LoRA files in {repo_name}")
|
| 1015 |
+
return gr.update(choices=files, value=files[0])
|
| 1016 |
+
|
| 1017 |
+
except Exception as e:
|
| 1018 |
+
log(f"❌ Failed to list LoRA files: {e}")
|
| 1019 |
+
return gr.update(choices=[], value=None)
|
| 1020 |
+
|
| 1021 |
+
refresh_lora_btn.click(
|
| 1022 |
+
refresh_lora_list,
|
| 1023 |
+
inputs=[lora_repo],
|
| 1024 |
+
outputs=[lora_file]
|
| 1025 |
+
)
|
| 1026 |
+
|
| 1027 |
+
def apply_lora(repo_name, lora_filename, strength):
|
| 1028 |
+
global pipe
|
| 1029 |
+
|
| 1030 |
+
if pipe is None:
|
| 1031 |
+
return "❌ Pipeline not initialized"
|
| 1032 |
+
|
| 1033 |
+
if not lora_filename:
|
| 1034 |
+
return "⚠️ No LoRA file selected"
|
| 1035 |
+
|
| 1036 |
+
try:
|
| 1037 |
+
pipe.load_lora_weights(
|
| 1038 |
+
repo_name,
|
| 1039 |
+
weight_name=lora_filename,
|
| 1040 |
+
adapter_name="ui_lora"
|
| 1041 |
+
)
|
| 1042 |
+
pipe.set_adapters(["ui_lora"], [strength])
|
| 1043 |
+
|
| 1044 |
+
log(f"✅ Applied LoRA: {repo_name}/{lora_filename} (strength={strength})")
|
| 1045 |
+
|
| 1046 |
+
if hasattr(pipe, "peft_config"):
|
| 1047 |
+
log(f"🎯 Active adapters: {list(pipe.peft_config.keys())}")
|
| 1048 |
+
|
| 1049 |
+
return "LoRA applied"
|
| 1050 |
+
|
| 1051 |
+
except Exception as e:
|
| 1052 |
+
log(f"❌ Failed to apply LoRA: {e}")
|
| 1053 |
+
return f"Failed: {e}"
|
| 1054 |
+
|
| 1055 |
+
apply_lora_btn.click(
|
| 1056 |
+
apply_lora,
|
| 1057 |
+
inputs=[lora_repo, lora_file, lora_strength],
|
| 1058 |
+
outputs=[logs_box]
|
| 1059 |
+
)
|
| 1060 |
+
|
| 1061 |
+
def clear_lora():
|
| 1062 |
+
global pipe
|
| 1063 |
+
if pipe is None:
|
| 1064 |
+
return "❌ Pipeline not initialized"
|
| 1065 |
+
|
| 1066 |
+
try:
|
| 1067 |
+
pipe.set_adapters([], [])
|
| 1068 |
+
log("🧹 LoRA cleared")
|
| 1069 |
+
return "LoRA cleared"
|
| 1070 |
+
except Exception as e:
|
| 1071 |
+
log(f"❌ Failed to clear LoRA: {e}")
|
| 1072 |
+
return f"Failed: {e}"
|
| 1073 |
+
|
| 1074 |
+
clear_lora_btn.click(
|
| 1075 |
+
clear_lora,
|
| 1076 |
+
outputs=[logs_box]
|
| 1077 |
+
)
|
| 1078 |
+
|
| 1079 |
+
# =========================
|
| 1080 |
+
# GENERATION
|
| 1081 |
+
# =========================
|
| 1082 |
+
run_btn.click(
|
| 1083 |
+
generate_image,
|
| 1084 |
+
inputs=[prompt, height, width, steps, seed],
|
| 1085 |
+
outputs=[final_image, latent_gallery, logs_box]
|
| 1086 |
+
)
|
| 1087 |
+
|
| 1088 |
+
|
| 1089 |
+
|
| 1090 |
+
|
| 1091 |
+
demo.launch()
|