Spaces:
Running
Running
try fix
Browse files
app.py
CHANGED
|
@@ -32,10 +32,9 @@ model.eval()
|
|
| 32 |
|
| 33 |
# Define the classification function
|
| 34 |
# Define the classification function
|
| 35 |
-
def classify_and_visualize(
|
| 36 |
-
|
| 37 |
-
)
|
| 38 |
-
img = Image.open(img_path).convert("RGB")
|
| 39 |
processed_input = processor(images=img, return_tensors="pt").to(device)
|
| 40 |
|
| 41 |
with torch.no_grad():
|
|
@@ -46,21 +45,20 @@ def classify_and_visualize(
|
|
| 46 |
predicted_class = class_names[prediction]
|
| 47 |
|
| 48 |
result = {class_name: prob for class_name, prob in zip(class_names, probabilities)}
|
| 49 |
-
filename
|
| 50 |
|
| 51 |
# Generate attention heatmap
|
| 52 |
heatmap_img = show_final_layer_attention_maps(
|
| 53 |
model, processed_input, device, discard_ratio, head_fusion
|
| 54 |
)
|
| 55 |
|
| 56 |
-
return {"
|
| 57 |
|
| 58 |
|
| 59 |
def format_output(output):
|
| 60 |
return (
|
| 61 |
-
f"{output['filename']}",
|
| 62 |
output["probabilities"],
|
| 63 |
-
|
| 64 |
)
|
| 65 |
|
| 66 |
|
|
@@ -69,7 +67,7 @@ def load_examples_from_folder(folder_path):
|
|
| 69 |
examples = []
|
| 70 |
for file in os.listdir(folder_path):
|
| 71 |
if file.endswith((".png", ".jpg", ".jpeg")):
|
| 72 |
-
examples.append(os.path.join(folder_path, file))
|
| 73 |
return examples
|
| 74 |
|
| 75 |
|
|
@@ -156,9 +154,8 @@ examples = load_examples_from_folder(examples_folder)
|
|
| 156 |
# Create the Gradio interface
|
| 157 |
iface = gr.Interface(
|
| 158 |
fn=lambda img: format_output(classify_and_visualize(img)),
|
| 159 |
-
inputs=gr.Image(type="
|
| 160 |
outputs=[
|
| 161 |
-
gr.Textbox(label="True Label (from filename)"),
|
| 162 |
gr.Label(),
|
| 163 |
gr.Image(label="Attention Heatmap"),
|
| 164 |
],
|
|
|
|
| 32 |
|
| 33 |
# Define the classification function
|
| 34 |
# Define the classification function
|
| 35 |
+
def classify_and_visualize(img, device="cpu", discard_ratio=0.9, head_fusion="mean"):
|
| 36 |
+
# filename = img.filename
|
| 37 |
+
img = img.convert("RGB")
|
|
|
|
| 38 |
processed_input = processor(images=img, return_tensors="pt").to(device)
|
| 39 |
|
| 40 |
with torch.no_grad():
|
|
|
|
| 45 |
predicted_class = class_names[prediction]
|
| 46 |
|
| 47 |
result = {class_name: prob for class_name, prob in zip(class_names, probabilities)}
|
| 48 |
+
# get the filename from the image object
|
| 49 |
|
| 50 |
# Generate attention heatmap
|
| 51 |
heatmap_img = show_final_layer_attention_maps(
|
| 52 |
model, processed_input, device, discard_ratio, head_fusion
|
| 53 |
)
|
| 54 |
|
| 55 |
+
return {"probabilities": result, "heatmap": heatmap_img}
|
| 56 |
|
| 57 |
|
| 58 |
def format_output(output):
|
| 59 |
return (
|
|
|
|
| 60 |
output["probabilities"],
|
| 61 |
+
output["heatmap"] if output["heatmap"] is not None else None,
|
| 62 |
)
|
| 63 |
|
| 64 |
|
|
|
|
| 67 |
examples = []
|
| 68 |
for file in os.listdir(folder_path):
|
| 69 |
if file.endswith((".png", ".jpg", ".jpeg")):
|
| 70 |
+
examples.append(Image.open(os.path.join(folder_path, file)))
|
| 71 |
return examples
|
| 72 |
|
| 73 |
|
|
|
|
| 154 |
# Create the Gradio interface
|
| 155 |
iface = gr.Interface(
|
| 156 |
fn=lambda img: format_output(classify_and_visualize(img)),
|
| 157 |
+
inputs=gr.Image(type="pil", label="Upload X-Ray Image"),
|
| 158 |
outputs=[
|
|
|
|
| 159 |
gr.Label(),
|
| 160 |
gr.Image(label="Attention Heatmap"),
|
| 161 |
],
|