Spaces:
Running
Running
added attention rollout for visualisation of the ViT prediction
Browse files- .history/app_20240617182329.py +72 -0
- .history/app_20240617182353.py +72 -0
- .history/app_20240617182506.py +72 -0
- app.py +103 -9
- requirements.txt +6 -1
.history/app_20240617182329.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import ViTForImageClassification, ViTImageProcessor
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
|
| 8 |
+
# Model and processor configuration
|
| 9 |
+
model_name_or_path = "google/vit-base-patch16-224-in21k"
|
| 10 |
+
processor = ViTImageProcessor.from_pretrained(model_name_or_path)
|
| 11 |
+
|
| 12 |
+
# Load dataset (adjust dataset_path accordingly)
|
| 13 |
+
dataset_path = "pawlo2013/chest_xray"
|
| 14 |
+
train_dataset = load_dataset(dataset_path, split="train")
|
| 15 |
+
class_names = train_dataset.features["label"].names
|
| 16 |
+
|
| 17 |
+
# Load ViT model
|
| 18 |
+
model = ViTForImageClassification.from_pretrained(
|
| 19 |
+
"./models",
|
| 20 |
+
num_labels=len(class_names),
|
| 21 |
+
id2label={str(i): label for i, label in enumerate(class_names)},
|
| 22 |
+
label2id={label: i for i, label in enumerate(class_names)},
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Set model to evaluation mode
|
| 26 |
+
model.eval()
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# Define the classification function
|
| 30 |
+
def classify_image(img_path):
|
| 31 |
+
img = Image.open(img_path)
|
| 32 |
+
processed_input = processor(images=img, return_tensors="pt")
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
outputs = model(**processed_input)
|
| 35 |
+
logits = outputs.logits
|
| 36 |
+
probabilities = torch.softmax(logits, dim=1)[0].tolist()
|
| 37 |
+
|
| 38 |
+
result = {class_name: prob for class_name, prob in zip(class_names, probabilities)}
|
| 39 |
+
filename = os.path.basename(img_path).split(".")[0]
|
| 40 |
+
return {"filename": filename, "probabilities": result}
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def format_output(output):
|
| 44 |
+
return f"{output['filename']}", output["probabilities"]
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# Function to load examples from a folder
|
| 48 |
+
def load_examples_from_folder(folder_path):
|
| 49 |
+
examples = []
|
| 50 |
+
for file in os.listdir(folder_path):
|
| 51 |
+
if file.endswith((".png", ".jpg", ".jpeg")):
|
| 52 |
+
examples.append(os.path.join(folder_path, file))
|
| 53 |
+
return examples
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# Define the path to the examples folder
|
| 57 |
+
examples_folder = "./examples"
|
| 58 |
+
examples = load_examples_from_folder(examples_folder)
|
| 59 |
+
|
| 60 |
+
# Create the Gradio interface
|
| 61 |
+
iface = gr.Interface(
|
| 62 |
+
fn=lambda img: format_output(classify_image(img)),
|
| 63 |
+
inputs=gr.Image(type="filepath"),
|
| 64 |
+
outputs=[gr.Textbox(label="True Label (from filename)"), gr.Label()],
|
| 65 |
+
examples=examples,
|
| 66 |
+
title="Pneumonia X-Ray 3-Class Classification with Vision Transformer (ViT) using data augmentation",
|
| 67 |
+
description="Upload an X-ray image to classify it as normal, viral or bacterial pneumonia. Checkout the model in more details at https://huggingface.co/pawlo2013/vit-pneumonia-x-ray_3_class. The examples presented are take from the test set of [Kermany et al. (2018) dataset.](https://data.mendeley.com/datasets/rscbjbr9sj/2)",
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# Launch the app
|
| 71 |
+
if __name__ == "__main__":
|
| 72 |
+
iface.launch()
|
.history/app_20240617182353.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import ViTForImageClassification, ViTImageProcessor
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
|
| 8 |
+
# Model and processor configuration
|
| 9 |
+
model_name_or_path = "google/vit-base-patch16-224-in21k"
|
| 10 |
+
processor = ViTImageProcessor.from_pretrained(model_name_or_path)
|
| 11 |
+
|
| 12 |
+
# Load dataset (adjust dataset_path accordingly)
|
| 13 |
+
dataset_path = "pawlo2013/chest_xray"
|
| 14 |
+
train_dataset = load_dataset(dataset_path, split="train")
|
| 15 |
+
class_names = train_dataset.features["label"].names
|
| 16 |
+
|
| 17 |
+
# Load ViT model
|
| 18 |
+
model = ViTForImageClassification.from_pretrained(
|
| 19 |
+
"./models",
|
| 20 |
+
num_labels=len(class_names),
|
| 21 |
+
id2label={str(i): label for i, label in enumerate(class_names)},
|
| 22 |
+
label2id={label: i for i, label in enumerate(class_names)},
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Set model to evaluation mode
|
| 26 |
+
model.eval()
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# Define the classification function
|
| 30 |
+
def classify_image(img_path):
|
| 31 |
+
img = Image.open(img_path)
|
| 32 |
+
processed_input = processor(images=img, return_tensors="pt")
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
outputs = model(**processed_input)
|
| 35 |
+
logits = outputs.logits
|
| 36 |
+
probabilities = torch.softmax(logits, dim=1)[0].tolist()
|
| 37 |
+
|
| 38 |
+
result = {class_name: prob for class_name, prob in zip(class_names, probabilities)}
|
| 39 |
+
filename = os.path.basename(img_path).split(".")[0]
|
| 40 |
+
return {"filename": filename, "probabilities": result}
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def format_output(output):
|
| 44 |
+
return f"{output['filename']}", output["probabilities"]
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# Function to load examples from a folder
|
| 48 |
+
def load_examples_from_folder(folder_path):
|
| 49 |
+
examples = []
|
| 50 |
+
for file in os.listdir(folder_path):
|
| 51 |
+
if file.endswith((".png", ".jpg", ".jpeg")):
|
| 52 |
+
examples.append(os.path.join(folder_path, file))
|
| 53 |
+
return examples
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# Define the path to the examples folder
|
| 57 |
+
examples_folder = "./examples"
|
| 58 |
+
examples = load_examples_from_folder(examples_folder)
|
| 59 |
+
|
| 60 |
+
# Create the Gradio interface
|
| 61 |
+
iface = gr.Interface(
|
| 62 |
+
fn=lambda img: format_output(classify_image(img)),
|
| 63 |
+
inputs=gr.Image(type="filepath"),
|
| 64 |
+
outputs=[gr.Textbox(label="True Label (from filename)"), gr.Label()],
|
| 65 |
+
examples=examples,
|
| 66 |
+
title="Pneumonia X-Ray 3-Class Classification with Vision Transformer (ViT) using data augmentation",
|
| 67 |
+
description="Upload an X-ray image to classify it as normal, viral or bacterial pneumonia. Checkout the model in more details [here] (https://huggingface.co/pawlo2013/vit-pneumonia-x-ray_3_class). The examples presented are take from the test set of [Kermany et al. (2018) dataset.](https://data.mendeley.com/datasets/rscbjbr9sj/2)",
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# Launch the app
|
| 71 |
+
if __name__ == "__main__":
|
| 72 |
+
iface.launch()
|
.history/app_20240617182506.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import ViTForImageClassification, ViTImageProcessor
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
|
| 8 |
+
# Model and processor configuration
|
| 9 |
+
model_name_or_path = "google/vit-base-patch16-224-in21k"
|
| 10 |
+
processor = ViTImageProcessor.from_pretrained(model_name_or_path)
|
| 11 |
+
|
| 12 |
+
# Load dataset (adjust dataset_path accordingly)
|
| 13 |
+
dataset_path = "pawlo2013/chest_xray"
|
| 14 |
+
train_dataset = load_dataset(dataset_path, split="train")
|
| 15 |
+
class_names = train_dataset.features["label"].names
|
| 16 |
+
|
| 17 |
+
# Load ViT model
|
| 18 |
+
model = ViTForImageClassification.from_pretrained(
|
| 19 |
+
"./models",
|
| 20 |
+
num_labels=len(class_names),
|
| 21 |
+
id2label={str(i): label for i, label in enumerate(class_names)},
|
| 22 |
+
label2id={label: i for i, label in enumerate(class_names)},
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Set model to evaluation mode
|
| 26 |
+
model.eval()
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# Define the classification function
|
| 30 |
+
def classify_image(img_path):
|
| 31 |
+
img = Image.open(img_path)
|
| 32 |
+
processed_input = processor(images=img, return_tensors="pt")
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
outputs = model(**processed_input)
|
| 35 |
+
logits = outputs.logits
|
| 36 |
+
probabilities = torch.softmax(logits, dim=1)[0].tolist()
|
| 37 |
+
|
| 38 |
+
result = {class_name: prob for class_name, prob in zip(class_names, probabilities)}
|
| 39 |
+
filename = os.path.basename(img_path).split(".")[0]
|
| 40 |
+
return {"filename": filename, "probabilities": result}
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def format_output(output):
|
| 44 |
+
return f"{output['filename']}", output["probabilities"]
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# Function to load examples from a folder
|
| 48 |
+
def load_examples_from_folder(folder_path):
|
| 49 |
+
examples = []
|
| 50 |
+
for file in os.listdir(folder_path):
|
| 51 |
+
if file.endswith((".png", ".jpg", ".jpeg")):
|
| 52 |
+
examples.append(os.path.join(folder_path, file))
|
| 53 |
+
return examples
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# Define the path to the examples folder
|
| 57 |
+
examples_folder = "./examples"
|
| 58 |
+
examples = load_examples_from_folder(examples_folder)
|
| 59 |
+
|
| 60 |
+
# Create the Gradio interface
|
| 61 |
+
iface = gr.Interface(
|
| 62 |
+
fn=lambda img: format_output(classify_image(img)),
|
| 63 |
+
inputs=gr.Image(type="filepath"),
|
| 64 |
+
outputs=[gr.Textbox(label="True Label (from filename)"), gr.Label()],
|
| 65 |
+
examples=examples,
|
| 66 |
+
title="Pneumonia X-Ray 3-Class Classification with Vision Transformer (ViT) using data augmentation",
|
| 67 |
+
description="Upload an X-ray image to classify it as normal, viral or bacterial pneumonia. Checkout the model in more details [here](https://huggingface.co/pawlo2013/vit-pneumonia-x-ray_3_class). The examples presented are take from the test set of [Kermany et al. (2018) dataset.](https://data.mendeley.com/datasets/rscbjbr9sj/2)",
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# Launch the app
|
| 71 |
+
if __name__ == "__main__":
|
| 72 |
+
iface.launch()
|
app.py
CHANGED
|
@@ -4,6 +4,10 @@ from PIL import Image
|
|
| 4 |
import torch
|
| 5 |
from transformers import ViTForImageClassification, ViTImageProcessor
|
| 6 |
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Model and processor configuration
|
| 9 |
model_name_or_path = "google/vit-base-patch16-224-in21k"
|
|
@@ -27,21 +31,37 @@ model.eval()
|
|
| 27 |
|
| 28 |
|
| 29 |
# Define the classification function
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
with torch.no_grad():
|
| 34 |
outputs = model(**processed_input)
|
| 35 |
logits = outputs.logits
|
| 36 |
probabilities = torch.softmax(logits, dim=1)[0].tolist()
|
|
|
|
|
|
|
| 37 |
|
| 38 |
result = {class_name: prob for class_name, prob in zip(class_names, probabilities)}
|
| 39 |
filename = os.path.basename(img_path).split(".")[0]
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
def format_output(output):
|
| 44 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
# Function to load examples from a folder
|
|
@@ -53,20 +73,94 @@ def load_examples_from_folder(folder_path):
|
|
| 53 |
return examples
|
| 54 |
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
# Define the path to the examples folder
|
| 57 |
examples_folder = "./examples"
|
| 58 |
examples = load_examples_from_folder(examples_folder)
|
| 59 |
|
| 60 |
# Create the Gradio interface
|
| 61 |
iface = gr.Interface(
|
| 62 |
-
fn=lambda img: format_output(
|
| 63 |
inputs=gr.Image(type="filepath"),
|
| 64 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
examples=examples,
|
| 66 |
title="Pneumonia X-Ray 3-Class Classification with Vision Transformer (ViT) using data augmentation",
|
| 67 |
-
description="Upload an X-ray image to classify it as normal, viral or bacterial pneumonia. Checkout the model in more details
|
| 68 |
)
|
| 69 |
-
|
| 70 |
# Launch the app
|
| 71 |
if __name__ == "__main__":
|
| 72 |
iface.launch()
|
|
|
|
| 4 |
import torch
|
| 5 |
from transformers import ViTForImageClassification, ViTImageProcessor
|
| 6 |
from datasets import load_dataset
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import numpy as np
|
| 9 |
+
import cv2
|
| 10 |
+
|
| 11 |
|
| 12 |
# Model and processor configuration
|
| 13 |
model_name_or_path = "google/vit-base-patch16-224-in21k"
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
# Define the classification function
|
| 34 |
+
# Define the classification function
|
| 35 |
+
def classify_and_visualize(
|
| 36 |
+
img_path, device="cpu", discard_ratio=0.9, head_fusion="mean"
|
| 37 |
+
):
|
| 38 |
+
img = Image.open(img_path).convert("RGB")
|
| 39 |
+
processed_input = processor(images=img, return_tensors="pt").to(device)
|
| 40 |
+
|
| 41 |
with torch.no_grad():
|
| 42 |
outputs = model(**processed_input)
|
| 43 |
logits = outputs.logits
|
| 44 |
probabilities = torch.softmax(logits, dim=1)[0].tolist()
|
| 45 |
+
prediction = torch.argmax(logits, dim=-1).item()
|
| 46 |
+
predicted_class = class_names[prediction]
|
| 47 |
|
| 48 |
result = {class_name: prob for class_name, prob in zip(class_names, probabilities)}
|
| 49 |
filename = os.path.basename(img_path).split(".")[0]
|
| 50 |
+
|
| 51 |
+
# Generate attention heatmap
|
| 52 |
+
heatmap_img = show_final_layer_attention_maps(
|
| 53 |
+
model, processed_input, device, discard_ratio, head_fusion
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
return {"filename": filename, "probabilities": result, "heatmap": heatmap_img}
|
| 57 |
|
| 58 |
|
| 59 |
def format_output(output):
|
| 60 |
+
return (
|
| 61 |
+
f"{output['filename']}",
|
| 62 |
+
output["probabilities"],
|
| 63 |
+
gr.Image(value=output["heatmap"]),
|
| 64 |
+
)
|
| 65 |
|
| 66 |
|
| 67 |
# Function to load examples from a folder
|
|
|
|
| 73 |
return examples
|
| 74 |
|
| 75 |
|
| 76 |
+
# Function to show final layer attention maps
|
| 77 |
+
def show_final_layer_attention_maps(
|
| 78 |
+
model, tensor, device, discard_ratio=0.6, head_fusion="max", only_last_layer=False
|
| 79 |
+
):
|
| 80 |
+
# Create a DataLoader with batch size equal to the number of images
|
| 81 |
+
image = tensor["pixel_values"].to(device).squeeze(0)
|
| 82 |
+
|
| 83 |
+
# Iterate over the samples
|
| 84 |
+
with torch.no_grad():
|
| 85 |
+
# Forward pass through the model
|
| 86 |
+
outputs = model(**tensor, output_attentions=True)
|
| 87 |
+
|
| 88 |
+
# Scale image to [0, 1]
|
| 89 |
+
image = image - image.min()
|
| 90 |
+
image = image / image.max()
|
| 91 |
+
|
| 92 |
+
# Initialize the result tensor and recursively fuse the attention maps
|
| 93 |
+
result = torch.eye(outputs.attentions[0].size(-1)).to(device)
|
| 94 |
+
if only_last_layer:
|
| 95 |
+
attention_list = outputs.attentions[-1].unsqueeze(0).to(device)
|
| 96 |
+
else:
|
| 97 |
+
attention_list = outputs.attentions
|
| 98 |
+
|
| 99 |
+
for attention in attention_list:
|
| 100 |
+
if head_fusion == "mean":
|
| 101 |
+
attention_heads_fused = attention.mean(axis=1)
|
| 102 |
+
elif head_fusion == "max":
|
| 103 |
+
attention_heads_fused = attention.max(axis=1)[0]
|
| 104 |
+
elif head_fusion == "min":
|
| 105 |
+
attention_heads_fused = attention.min(axis=1)[0]
|
| 106 |
+
|
| 107 |
+
flat = attention_heads_fused.view(attention_heads_fused.size(0), -1)
|
| 108 |
+
_, indices = flat.topk(int(flat.size(-1) * discard_ratio), -1, False)
|
| 109 |
+
indices = indices[indices != 0]
|
| 110 |
+
flat[0, indices] = 0
|
| 111 |
+
|
| 112 |
+
I = torch.eye(attention_heads_fused.size(-1)).to(device)
|
| 113 |
+
a = (attention_heads_fused + 1.0 * I) / 2
|
| 114 |
+
a = a / a.sum(dim=-1)
|
| 115 |
+
|
| 116 |
+
result = torch.matmul(a, result)
|
| 117 |
+
|
| 118 |
+
mask = result[0, 0, 1:]
|
| 119 |
+
# In case of 224x224 image, this brings us from 196 to 14
|
| 120 |
+
width = int(mask.size(-1) ** 0.5)
|
| 121 |
+
mask = mask.reshape(width, width).cpu().numpy()
|
| 122 |
+
mask = mask / np.max(mask)
|
| 123 |
+
|
| 124 |
+
mask = cv2.resize(mask, (224, 224))
|
| 125 |
+
|
| 126 |
+
# Normalize mask to [0, 1] for visualization
|
| 127 |
+
mask = (mask - np.min(mask)) / (np.max(mask) - np.min(mask))
|
| 128 |
+
heatmap = plt.cm.jet(mask)[:, :, :3] # Apply colormap
|
| 129 |
+
|
| 130 |
+
# Superimpose heatmap on the original image
|
| 131 |
+
showed_img = image.permute(1, 2, 0).detach().cpu().numpy()
|
| 132 |
+
showed_img = (showed_img - np.min(showed_img)) / (
|
| 133 |
+
np.max(showed_img) - np.min(showed_img)
|
| 134 |
+
) # Normalize image
|
| 135 |
+
superimposed_img = (
|
| 136 |
+
heatmap * 0.4 + showed_img * 0.6
|
| 137 |
+
) # Combine heatmap with original image
|
| 138 |
+
|
| 139 |
+
# Plot attention map
|
| 140 |
+
superimposed_img_pil = Image.fromarray(
|
| 141 |
+
(superimposed_img * 255).astype(np.uint8)
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
return superimposed_img_pil
|
| 145 |
+
|
| 146 |
+
|
| 147 |
# Define the path to the examples folder
|
| 148 |
examples_folder = "./examples"
|
| 149 |
examples = load_examples_from_folder(examples_folder)
|
| 150 |
|
| 151 |
# Create the Gradio interface
|
| 152 |
iface = gr.Interface(
|
| 153 |
+
fn=lambda img: format_output(classify_and_visualize(img)),
|
| 154 |
inputs=gr.Image(type="filepath"),
|
| 155 |
+
outputs=[
|
| 156 |
+
gr.Textbox(label="True Label (from filename)"),
|
| 157 |
+
gr.Label(),
|
| 158 |
+
gr.Image(label="Attention Heatmap"),
|
| 159 |
+
],
|
| 160 |
examples=examples,
|
| 161 |
title="Pneumonia X-Ray 3-Class Classification with Vision Transformer (ViT) using data augmentation",
|
| 162 |
+
description="Upload an X-ray image to classify it as normal, viral or bacterial pneumonia. Checkout the model in more details [here](https://huggingface.co/pawlo2013/vit-pneumonia-x-ray_3_class). The examples presented are taken from the test set of [Kermany et al. (2018) dataset.](https://data.mendeley.com/datasets/rscbjbr9sj/2.) The attention heatmap over all layers of the transfomer done by the attention rollout techinique by the implementation of [jacobgil](https://github.com/jacobgil/vit-explain).",
|
| 163 |
)
|
|
|
|
| 164 |
# Launch the app
|
| 165 |
if __name__ == "__main__":
|
| 166 |
iface.launch()
|
requirements.txt
CHANGED
|
@@ -1,3 +1,8 @@
|
|
| 1 |
torch
|
| 2 |
transformers
|
| 3 |
-
datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
torch
|
| 2 |
transformers
|
| 3 |
+
datasets
|
| 4 |
+
numpy
|
| 5 |
+
cv2
|
| 6 |
+
PIL
|
| 7 |
+
os
|
| 8 |
+
matplotlib
|