Spaces:
Sleeping
Sleeping
app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 4 |
+
|
| 5 |
+
# 1. Load a model that fits in the free tier
|
| 6 |
+
# 'flan-t5-large' is powerful but small enough for the free CPU tier
|
| 7 |
+
model_name = 'google/flan-t5-large'
|
| 8 |
+
|
| 9 |
+
print("Loading model... this may take a minute.")
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 12 |
+
|
| 13 |
+
# Use GPU if available, otherwise CPU
|
| 14 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 15 |
+
model = model.to(device)
|
| 16 |
+
|
| 17 |
+
# 2. Define the generation function
|
| 18 |
+
def generate_text(task_prefix, input_text):
|
| 19 |
+
# Dynamic prompt construction
|
| 20 |
+
prompt = f"{task_prefix}: {input_text}"
|
| 21 |
+
|
| 22 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 23 |
+
|
| 24 |
+
# Generate output
|
| 25 |
+
output_ids = model.generate(
|
| 26 |
+
**inputs,
|
| 27 |
+
max_length=64,
|
| 28 |
+
num_beams=4,
|
| 29 |
+
early_stopping=True,
|
| 30 |
+
no_repeat_ngram_size=2
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 34 |
+
|
| 35 |
+
# 3. Create the Web Interface
|
| 36 |
+
# We map the choices to the actual prefixes the model understands
|
| 37 |
+
task_choices = [
|
| 38 |
+
"summarize",
|
| 39 |
+
"translate French to English",
|
| 40 |
+
"paraphrase",
|
| 41 |
+
"generate question",
|
| 42 |
+
"sst2 sentence"
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
demo = gr.Interface(
|
| 46 |
+
fn=generate_text,
|
| 47 |
+
inputs=[
|
| 48 |
+
gr.Dropdown(choices=task_choices, label="Select Task", value="summarize"),
|
| 49 |
+
gr.Textbox(label="Input Text", placeholder="Enter your text here...")
|
| 50 |
+
],
|
| 51 |
+
outputs=gr.Textbox(label="AI Output"),
|
| 52 |
+
title="Multi-Task AI Generator",
|
| 53 |
+
description="Select a task and enter text. Powered by Google Flan-T5."
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# 4. Launch
|
| 57 |
+
demo.launch()
|