Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from peft import PeftModel | |
| # Load base GPT-2 + your LoRA adapter from Hugging Face Hub | |
| base_model = AutoModelForCausalLM.from_pretrained("gpt2") | |
| tokenizer = AutoTokenizer.from_pretrained("n-sudheer/ns-lora-gpt2-demo") | |
| model = PeftModel.from_pretrained(base_model, "n-sudheer/ns-lora-gpt2-demo") | |
| def generate_text(prompt, max_length=50): | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| outputs = model.generate( | |
| **inputs, | |
| max_length=max_length, | |
| do_sample=True, | |
| top_k=50 | |
| ) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| demo = gr.Interface( | |
| fn=generate_text, | |
| inputs=[ | |
| gr.Textbox(label="Prompt"), | |
| gr.Slider(10, 200, value=50, step=5, label="Max length") | |
| ], | |
| outputs=gr.Textbox(label="Generated Text"), | |
| title="LoRA GPT-2 Demo", | |
| description="A GPT-2 model fine-tuned with LoRA, deployed on Hugging Face Spaces." | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |