import math import torch import torch.nn as nn from .. import SparseTensor from . import config import flex_gemm from flex_gemm.ops.spconv import sparse_submanifold_conv3d def sparse_conv3d_init(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, padding=None, bias=True, indice_key=None): assert stride == 1 and (padding is None), 'Currently flex_gemm implementation only support submanifold sparse convolution (stride=1, padding=None)' self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = tuple(kernel_size) if isinstance(kernel_size, (list, tuple)) else (kernel_size, ) * 3 self.stride = tuple(stride) if isinstance(stride, (list, tuple)) else (stride, ) * 3 self.dilation = tuple(dilation) if isinstance(dilation, (list, tuple)) else (dilation, ) * 3 self.weight = nn.Parameter(torch.empty((out_channels, in_channels, *self.kernel_size))) if bias: self.bias = nn.Parameter(torch.empty(out_channels)) else: self.register_parameter("bias", None) # initialize parameters torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight) if fan_in != 0: bound = 1 / math.sqrt(fan_in) torch.nn.init.uniform_(self.bias, -bound, bound) # Permute weight (Co, Ci, Kd, Kh, Kw) -> (Co, Kd, Kh, Kw, Ci) self.weight = nn.Parameter(self.weight.permute(0, 2, 3, 4, 1).contiguous()) def sparse_conv3d_forward(self, x: SparseTensor) -> SparseTensor: flex_gemm.ops.spconv.set_algorithm(config.FLEX_GEMM_ALGO) flex_gemm.ops.spconv.set_hashmap_ratio(config.FLEX_GEMM_HASHMAP_RATIO) # check if neighbor map is already computed Co, Kd, Kh, Kw, Ci = self.weight.shape neighbor_cache_key = f'SubMConv3d_neighbor_cache_{Kw}x{Kh}x{Kd}_dilation{self.dilation}' neighbor_cache = x.get_spatial_cache(neighbor_cache_key) out, neighbor_cache_ = sparse_submanifold_conv3d( x.feats, x.coords, torch.Size([*x.shape, *x.spatial_shape]), self.weight, self.bias, neighbor_cache, self.dilation ) if neighbor_cache is None: x.register_spatial_cache(neighbor_cache_key, neighbor_cache_) out = x.replace(out) return out def sparse_inverse_conv3d_init(self, *args, **kwargs): raise NotImplementedError('SparseInverseConv3d with flex_gemm is not implemented yet') def sparse_inverse_conv3d_forward(self, x: SparseTensor) -> SparseTensor: raise NotImplementedError('SparseInverseConv3d with flex_gemm is not implemented yet')