JeffreyXiang's picture
Finalize
a1e3f5f
import math
import torch
import torch.nn as nn
from .. import SparseTensor
from . import config
import flex_gemm
from flex_gemm.ops.spconv import sparse_submanifold_conv3d
def sparse_conv3d_init(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, padding=None, bias=True, indice_key=None):
assert stride == 1 and (padding is None), 'Currently flex_gemm implementation only support submanifold sparse convolution (stride=1, padding=None)'
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = tuple(kernel_size) if isinstance(kernel_size, (list, tuple)) else (kernel_size, ) * 3
self.stride = tuple(stride) if isinstance(stride, (list, tuple)) else (stride, ) * 3
self.dilation = tuple(dilation) if isinstance(dilation, (list, tuple)) else (dilation, ) * 3
self.weight = nn.Parameter(torch.empty((out_channels, in_channels, *self.kernel_size)))
if bias:
self.bias = nn.Parameter(torch.empty(out_channels))
else:
self.register_parameter("bias", None)
# initialize parameters
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight)
if fan_in != 0:
bound = 1 / math.sqrt(fan_in)
torch.nn.init.uniform_(self.bias, -bound, bound)
# Permute weight (Co, Ci, Kd, Kh, Kw) -> (Co, Kd, Kh, Kw, Ci)
self.weight = nn.Parameter(self.weight.permute(0, 2, 3, 4, 1).contiguous())
def sparse_conv3d_forward(self, x: SparseTensor) -> SparseTensor:
flex_gemm.ops.spconv.set_algorithm(config.FLEX_GEMM_ALGO)
flex_gemm.ops.spconv.set_hashmap_ratio(config.FLEX_GEMM_HASHMAP_RATIO)
# check if neighbor map is already computed
Co, Kd, Kh, Kw, Ci = self.weight.shape
neighbor_cache_key = f'SubMConv3d_neighbor_cache_{Kw}x{Kh}x{Kd}_dilation{self.dilation}'
neighbor_cache = x.get_spatial_cache(neighbor_cache_key)
out, neighbor_cache_ = sparse_submanifold_conv3d(
x.feats,
x.coords,
torch.Size([*x.shape, *x.spatial_shape]),
self.weight,
self.bias,
neighbor_cache,
self.dilation
)
if neighbor_cache is None:
x.register_spatial_cache(neighbor_cache_key, neighbor_cache_)
out = x.replace(out)
return out
def sparse_inverse_conv3d_init(self, *args, **kwargs):
raise NotImplementedError('SparseInverseConv3d with flex_gemm is not implemented yet')
def sparse_inverse_conv3d_forward(self, x: SparseTensor) -> SparseTensor:
raise NotImplementedError('SparseInverseConv3d with flex_gemm is not implemented yet')