File size: 24,183 Bytes
917a889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
from typing import *
import torch
from easydict import EasyDict as edict
from ..representations.mesh import Mesh, MeshWithVoxel, MeshWithPbrMaterial, TextureFilterMode, AlphaMode, TextureWrapMode
import torch.nn.functional as F


def intrinsics_to_projection(
        intrinsics: torch.Tensor,
        near: float,
        far: float,
    ) -> torch.Tensor:
    """
    OpenCV intrinsics to OpenGL perspective matrix

    Args:
        intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix
        near (float): near plane to clip
        far (float): far plane to clip
    Returns:
        (torch.Tensor): [4, 4] OpenGL perspective matrix
    """
    fx, fy = intrinsics[0, 0], intrinsics[1, 1]
    cx, cy = intrinsics[0, 2], intrinsics[1, 2]
    ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device)
    ret[0, 0] = 2 * fx
    ret[1, 1] = 2 * fy
    ret[0, 2] = 2 * cx - 1
    ret[1, 2] = - 2 * cy + 1
    ret[2, 2] = (far + near) / (far - near)
    ret[2, 3] = 2 * near * far / (near - far)
    ret[3, 2] = 1.
    return ret
    

class MeshRenderer:
    """
    Renderer for the Mesh representation.

    Args:
        rendering_options (dict): Rendering options.
        """
    def __init__(self, rendering_options={}, device='cuda'):
        if 'dr' not in globals():
            import nvdiffrast.torch as dr
        
        self.rendering_options = edict({
            "resolution": None,
            "near": None,
            "far": None,
            "ssaa": 1,
            "chunk_size": None,
            "antialias": True,
            "clamp_barycentric_coords": False,
        })
        self.rendering_options.update(rendering_options)
        self.glctx = dr.RasterizeCudaContext(device=device)
        self.device=device
        
    def render(
            self,
            mesh : Mesh,
            extrinsics: torch.Tensor,
            intrinsics: torch.Tensor,
            return_types = ["mask", "normal", "depth"],
            transformation : Optional[torch.Tensor] = None
        ) -> edict:
        """
        Render the mesh.

        Args:
            mesh : meshmodel
            extrinsics (torch.Tensor): (4, 4) camera extrinsics
            intrinsics (torch.Tensor): (3, 3) camera intrinsics
            return_types (list): list of return types, can be "attr", "mask", "depth", "coord", "normal"

        Returns:
            edict based on return_types containing:
                attr (torch.Tensor): [C, H, W] rendered attr image
                depth (torch.Tensor): [H, W] rendered depth image
                normal (torch.Tensor): [3, H, W] rendered normal image
                mask (torch.Tensor): [H, W] rendered mask image
        """
        if 'dr' not in globals():
            import nvdiffrast.torch as dr
            
        resolution = self.rendering_options["resolution"]
        near = self.rendering_options["near"]
        far = self.rendering_options["far"]
        ssaa = self.rendering_options["ssaa"]
        chunk_size = self.rendering_options["chunk_size"]
        antialias = self.rendering_options["antialias"]
        clamp_barycentric_coords = self.rendering_options["clamp_barycentric_coords"]
        
        if mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
            ret_dict = edict()
            for type in return_types:
                if type == "mask" :
                    ret_dict[type] = torch.zeros((resolution, resolution), dtype=torch.float32, device=self.device)
                elif type == "depth":
                    ret_dict[type] = torch.zeros((resolution, resolution), dtype=torch.float32, device=self.device)
                elif type == "normal":
                    ret_dict[type] = torch.full((3, resolution, resolution), 0.5, dtype=torch.float32, device=self.device)
                elif type == "coord":
                    ret_dict[type] = torch.zeros((3, resolution, resolution), dtype=torch.float32, device=self.device)
                elif type == "attr":
                    if isinstance(mesh, MeshWithVoxel):
                        ret_dict[type] = torch.zeros((mesh.attrs.shape[-1], resolution, resolution), dtype=torch.float32, device=self.device)
                    else:
                        ret_dict[type] = torch.zeros((mesh.vertex_attrs.shape[-1], resolution, resolution), dtype=torch.float32, device=self.device)
            return ret_dict
        
        perspective = intrinsics_to_projection(intrinsics, near, far)
        
        full_proj = (perspective @ extrinsics).unsqueeze(0)
        extrinsics = extrinsics.unsqueeze(0)
        
        vertices = mesh.vertices.unsqueeze(0)
        vertices_homo = torch.cat([vertices, torch.ones_like(vertices[..., :1])], dim=-1)
        if transformation is not None:
            vertices_homo = torch.bmm(vertices_homo, transformation.unsqueeze(0).transpose(-1, -2))
            vertices = vertices_homo[..., :3].contiguous()
        vertices_camera = torch.bmm(vertices_homo, extrinsics.transpose(-1, -2))
        vertices_clip = torch.bmm(vertices_homo, full_proj.transpose(-1, -2))
        faces = mesh.faces
        
        if 'normal' in return_types:
            v0 = vertices_camera[0, mesh.faces[:, 0], :3]
            v1 = vertices_camera[0, mesh.faces[:, 1], :3]
            v2 = vertices_camera[0, mesh.faces[:, 2], :3]
            e0 = v1 - v0
            e1 = v2 - v0
            face_normal = torch.cross(e0, e1, dim=1)
            face_normal = F.normalize(face_normal, dim=1)
            face_normal = torch.where(torch.sum(face_normal * v0, dim=1, keepdim=True) > 0, face_normal, -face_normal)
        
        out_dict = edict()
        if chunk_size is None:
            rast, rast_db = dr.rasterize(
                self.glctx, vertices_clip, faces, (resolution * ssaa, resolution * ssaa)
            )
            if clamp_barycentric_coords:
                rast[..., :2] = torch.clamp(rast[..., :2], 0, 1)
                rast[..., :2] /= torch.where(rast[..., :2].sum(dim=-1, keepdim=True) > 1, rast[..., :2].sum(dim=-1, keepdim=True), torch.ones_like(rast[..., :2]))
            for type in return_types:
                img = None
                if type == "mask" :
                    img = (rast[..., -1:] > 0).float()
                    if antialias: img = dr.antialias(img, rast, vertices_clip, faces)
                elif type == "depth":
                    img = dr.interpolate(vertices_camera[..., 2:3].contiguous(), rast, faces)[0]
                    if antialias: img = dr.antialias(img, rast, vertices_clip, faces)
                elif type == "normal" :
                    img = dr.interpolate(face_normal.unsqueeze(0), rast, torch.arange(face_normal.shape[0], dtype=torch.int, device=self.device).unsqueeze(1).repeat(1, 3).contiguous())[0]
                    if antialias: img = dr.antialias(img, rast, vertices_clip, faces)
                    img = (img + 1) / 2
                elif type == "coord":
                    img = dr.interpolate(vertices, rast, faces)[0]
                    if antialias: img = dr.antialias(img, rast, vertices_clip, faces)
                elif type == "attr":
                    if isinstance(mesh, MeshWithVoxel):
                        if 'grid_sample_3d' not in globals():
                            from flex_gemm.ops.grid_sample import grid_sample_3d
                        mask = rast[..., -1:] > 0
                        xyz = dr.interpolate(vertices, rast, faces)[0]
                        xyz = ((xyz - mesh.origin) / mesh.voxel_size).reshape(1, -1, 3)
                        img = grid_sample_3d(
                            mesh.attrs,
                            torch.cat([torch.zeros_like(mesh.coords[..., :1]), mesh.coords], dim=-1),
                            mesh.voxel_shape,
                            xyz,
                            mode='trilinear'
                        )
                        img = img.reshape(1, resolution * ssaa, resolution * ssaa, mesh.attrs.shape[-1]) * mask
                    elif isinstance(mesh, MeshWithPbrMaterial):
                        tri_id = rast[0, :, :, -1:]
                        mask = tri_id > 0
                        uv_coords = mesh.uv_coords.reshape(1, -1, 2)
                        texc, texd = dr.interpolate(
                            uv_coords,
                            rast,
                            torch.arange(mesh.uv_coords.shape[0] * 3, dtype=torch.int, device=self.device).reshape(-1, 3),
                            rast_db=rast_db,
                            diff_attrs='all'
                        )
                        # Fix problematic texture coordinates
                        texc = torch.nan_to_num(texc, nan=0.0, posinf=1e3, neginf=-1e3)
                        texc = torch.clamp(texc, min=-1e3, max=1e3)
                        texd = torch.nan_to_num(texd, nan=0.0, posinf=1e3, neginf=-1e3)
                        texd = torch.clamp(texd, min=-1e3, max=1e3)
                        mid = mesh.material_ids[(tri_id - 1).long()]
                        imgs = {
                            'base_color': torch.zeros((resolution * ssaa, resolution * ssaa, 3), dtype=torch.float32, device=self.device),
                            'metallic': torch.zeros((resolution * ssaa, resolution * ssaa, 1), dtype=torch.float32, device=self.device),
                            'roughness': torch.zeros((resolution * ssaa, resolution * ssaa, 1), dtype=torch.float32, device=self.device),
                            'alpha': torch.zeros((resolution * ssaa, resolution * ssaa, 1), dtype=torch.float32, device=self.device)
                        }
                        for id, mat in enumerate(mesh.materials):
                            mat_mask = (mid == id).float() * mask.float()
                            mat_texc = texc * mat_mask
                            mat_texd = texd * mat_mask

                            if mat.base_color_texture is not None:
                                base_color = dr.texture(
                                    mat.base_color_texture.image.unsqueeze(0),
                                    mat_texc,
                                    mat_texd,
                                    filter_mode='linear-mipmap-linear' if mat.base_color_texture.filter_mode == TextureFilterMode.LINEAR else 'nearest',
                                    boundary_mode='clamp' if mat.base_color_texture.wrap_mode == TextureWrapMode.CLAMP_TO_EDGE else 'wrap'
                                )[0]
                                imgs['base_color'] += base_color * mat.base_color_factor * mat_mask
                            else:
                                imgs['base_color'] += mat.base_color_factor * mat_mask
                                
                            if mat.metallic_texture is not None:
                                metallic = dr.texture(
                                    mat.metallic_texture.image.unsqueeze(0),
                                    mat_texc,
                                    mat_texd,
                                    filter_mode='linear-mipmap-linear' if mat.metallic_texture.filter_mode == TextureFilterMode.LINEAR else 'nearest',
                                    boundary_mode='clamp' if mat.metallic_texture.wrap_mode == TextureWrapMode.CLAMP_TO_EDGE else 'wrap'
                                )[0]
                                imgs['metallic'] += metallic * mat.metallic_factor * mat_mask
                            else:
                                imgs['metallic'] += mat.metallic_factor * mat_mask

                            if mat.roughness_texture is not None:
                                roughness = dr.texture(
                                    mat.roughness_texture.image.unsqueeze(0),
                                    mat_texc,
                                    mat_texd,
                                    filter_mode='linear-mipmap-linear' if mat.roughness_texture.filter_mode == TextureFilterMode.LINEAR else 'nearest',
                                    boundary_mode='clamp' if mat.roughness_texture.wrap_mode == TextureWrapMode.CLAMP_TO_EDGE else 'wrap'
                                )[0]
                                imgs['roughness'] += roughness * mat.roughness_factor * mat_mask
                            else:
                                imgs['roughness'] += mat.roughness_factor * mat_mask

                            if mat.alpha_mode == AlphaMode.OPAQUE:
                                imgs['alpha'] += 1.0 * mat_mask
                            else:
                                if mat.alpha_texture is not None:
                                    alpha = dr.texture(
                                        mat.alpha_texture.image.unsqueeze(0),
                                        mat_texc,
                                        mat_texd,
                                        filter_mode='linear-mipmap-linear' if mat.alpha_texture.filter_mode == TextureFilterMode.LINEAR else 'nearest',
                                        boundary_mode='clamp' if mat.alpha_texture.wrap_mode == TextureWrapMode.CLAMP_TO_EDGE else 'wrap'
                                    )[0]
                                    if mat.alpha_mode == AlphaMode.MASK:
                                        imgs['alpha'] += (alpha * mat.alpha_factor > mat.alpha_cutoff).float() * mat_mask
                                    elif mat.alpha_mode == AlphaMode.BLEND:
                                        imgs['alpha'] += alpha * mat.alpha_factor * mat_mask
                                else:
                                    if mat.alpha_mode == AlphaMode.MASK:
                                        imgs['alpha'] += (mat.alpha_factor > mat.alpha_cutoff).float() * mat_mask
                                    elif mat.alpha_mode == AlphaMode.BLEND:
                                        imgs['alpha'] += mat.alpha_factor * mat_mask
                    
                        img = torch.cat([imgs[name] for name in imgs.keys()], dim=-1).unsqueeze(0)
                    else:
                        img = dr.interpolate(mesh.vertex_attrs.unsqueeze(0), rast, faces)[0]
                        if antialias: img = dr.antialias(img, rast, vertices_clip, faces)
                        
                out_dict[type] = img
        else:
            z_buffer = torch.full((1, resolution * ssaa, resolution * ssaa), torch.inf, device=self.device, dtype=torch.float32)
            for i in range(0, faces.shape[0], chunk_size):
                faces_chunk = faces[i:i+chunk_size]
                rast, rast_db = dr.rasterize(
                    self.glctx, vertices_clip, faces_chunk, (resolution * ssaa, resolution * ssaa)
                )
                z_filter = torch.logical_and(
                    rast[..., 3] != 0,
                    rast[..., 2] < z_buffer
                )
                z_buffer[z_filter] = rast[z_filter][..., 2]
            
                for type in return_types:
                    img = None
                    if type == "mask" :
                        img = (rast[..., -1:] > 0).float()
                    elif type == "depth":
                        img = dr.interpolate(vertices_camera[..., 2:3].contiguous(), rast, faces_chunk)[0]
                    elif type == "normal" :
                        face_normal_chunk = face_normal[i:i+chunk_size]
                        img = dr.interpolate(face_normal_chunk.unsqueeze(0), rast, torch.arange(face_normal_chunk.shape[0], dtype=torch.int, device=self.device).unsqueeze(1).repeat(1, 3).contiguous())[0]
                        img = (img + 1) / 2
                    elif type == "coord":
                        img = dr.interpolate(vertices, rast, faces_chunk)[0]
                    elif type == "attr":
                        if isinstance(mesh, MeshWithVoxel):
                            if 'grid_sample_3d' not in globals():
                                from flex_gemm.ops.grid_sample import grid_sample_3d
                            mask = rast[..., -1:] > 0
                            xyz = dr.interpolate(vertices, rast, faces_chunk)[0]
                            xyz = ((xyz - mesh.origin) / mesh.voxel_size).reshape(1, -1, 3)
                            img = grid_sample_3d(
                                mesh.attrs,
                                torch.cat([torch.zeros_like(mesh.coords[..., :1]), mesh.coords], dim=-1),
                                mesh.voxel_shape,
                                xyz,
                                mode='trilinear'
                            )
                            img = img.reshape(1, resolution * ssaa, resolution * ssaa, mesh.attrs.shape[-1]) * mask
                        elif isinstance(mesh, MeshWithPbrMaterial):
                            tri_id = rast[0, :, :, -1:]
                            mask = tri_id > 0
                            uv_coords = mesh.uv_coords.reshape(1, -1, 2)
                            texc, texd = dr.interpolate(
                                uv_coords,
                                rast,
                                torch.arange(mesh.uv_coords.shape[0] * 3, dtype=torch.int, device=self.device).reshape(-1, 3),
                                rast_db=rast_db,
                                diff_attrs='all'
                            )
                            # Fix problematic texture coordinates
                            texc = torch.nan_to_num(texc, nan=0.0, posinf=1e3, neginf=-1e3)
                            texc = torch.clamp(texc, min=-1e3, max=1e3)
                            texd = torch.nan_to_num(texd, nan=0.0, posinf=1e3, neginf=-1e3)
                            texd = torch.clamp(texd, min=-1e3, max=1e3)
                            mid = mesh.material_ids[(tri_id - 1).long()]
                            imgs = {
                                'base_color': torch.zeros((resolution * ssaa, resolution * ssaa, 3), dtype=torch.float32, device=self.device),
                                'metallic': torch.zeros((resolution * ssaa, resolution * ssaa, 1), dtype=torch.float32, device=self.device),
                                'roughness': torch.zeros((resolution * ssaa, resolution * ssaa, 1), dtype=torch.float32, device=self.device),
                                'alpha': torch.zeros((resolution * ssaa, resolution * ssaa, 1), dtype=torch.float32, device=self.device)
                            }
                            for id, mat in enumerate(mesh.materials):
                                mat_mask = (mid == id).float() * mask.float()
                                mat_texc = texc * mat_mask
                                mat_texd = texd * mat_mask

                                if mat.base_color_texture is not None:
                                    base_color = dr.texture(
                                        mat.base_color_texture.image.unsqueeze(0),
                                        mat_texc,
                                        mat_texd,
                                        filter_mode='linear-mipmap-linear' if mat.base_color_texture.filter_mode == TextureFilterMode.LINEAR else 'nearest',
                                        boundary_mode='clamp' if mat.base_color_texture.wrap_mode == TextureWrapMode.CLAMP_TO_EDGE else 'wrap'
                                    )[0]
                                    imgs['base_color'] += base_color * mat.base_color_factor * mat_mask
                                else:
                                    imgs['base_color'] += mat.base_color_factor * mat_mask
                                    
                                if mat.metallic_texture is not None:
                                    metallic = dr.texture(
                                        mat.metallic_texture.image.unsqueeze(0),
                                        mat_texc,
                                        mat_texd,
                                        filter_mode='linear-mipmap-linear' if mat.metallic_texture.filter_mode == TextureFilterMode.LINEAR else 'nearest',
                                        boundary_mode='clamp' if mat.metallic_texture.wrap_mode == TextureWrapMode.CLAMP_TO_EDGE else 'wrap'
                                    )[0]
                                    imgs['metallic'] += metallic * mat.metallic_factor * mat_mask
                                else:
                                    imgs['metallic'] += mat.metallic_factor * mat_mask

                                if mat.roughness_texture is not None:
                                    roughness = dr.texture(
                                        mat.roughness_texture.image.unsqueeze(0),
                                        mat_texc,
                                        mat_texd,
                                        filter_mode='linear-mipmap-linear' if mat.roughness_texture.filter_mode == TextureFilterMode.LINEAR else 'nearest',
                                        boundary_mode='clamp' if mat.roughness_texture.wrap_mode == TextureWrapMode.CLAMP_TO_EDGE else 'wrap'
                                    )[0]
                                    imgs['roughness'] += roughness * mat.roughness_factor * mat_mask
                                else:
                                    imgs['roughness'] += mat.roughness_factor * mat_mask

                                if mat.alpha_mode == AlphaMode.OPAQUE:
                                    imgs['alpha'] += 1.0 * mat_mask
                                else:
                                    if mat.alpha_texture is not None:
                                        alpha = dr.texture(
                                            mat.alpha_texture.image.unsqueeze(0),
                                            mat_texc,
                                            mat_texd,
                                            filter_mode='linear-mipmap-linear' if mat.alpha_texture.filter_mode == TextureFilterMode.LINEAR else 'nearest',
                                            boundary_mode='clamp' if mat.alpha_texture.wrap_mode == TextureWrapMode.CLAMP_TO_EDGE else 'wrap'
                                        )[0]
                                        if mat.alpha_mode == AlphaMode.MASK:
                                            imgs['alpha'] += (alpha * mat.alpha_factor > mat.alpha_cutoff).float() * mat_mask
                                        elif mat.alpha_mode == AlphaMode.BLEND:
                                            imgs['alpha'] += alpha * mat.alpha_factor * mat_mask
                                    else:
                                        if mat.alpha_mode == AlphaMode.MASK:
                                            imgs['alpha'] += (mat.alpha_factor > mat.alpha_cutoff).float() * mat_mask
                                        elif mat.alpha_mode == AlphaMode.BLEND:
                                            imgs['alpha'] += mat.alpha_factor * mat_mask
                        
                            img = torch.cat([imgs[name] for name in imgs.keys()], dim=-1).unsqueeze(0)
                        else:
                            img = dr.interpolate(mesh.vertex_attrs.unsqueeze(0), rast, faces_chunk)[0]
                            
                    if type not in out_dict:
                        out_dict[type] = img
                    else:
                        out_dict[type][z_filter] = img[z_filter]

        for type in return_types:
            img = out_dict[type]
            if ssaa > 1:
                img = F.interpolate(img.permute(0, 3, 1, 2), (resolution, resolution), mode='bilinear', align_corners=False, antialias=True)
                img = img.squeeze()
            else:
                img = img.permute(0, 3, 1, 2).squeeze()
            out_dict[type] = img

        if isinstance(mesh, (MeshWithVoxel, MeshWithPbrMaterial)) and 'attr' in return_types:
            for k, s in mesh.layout.items():
                out_dict[k] = out_dict['attr'][s]
            del out_dict['attr']
        
        return out_dict