File size: 14,608 Bytes
917a889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from typing import *
import numpy as np
import torch
from .. import _C
from flex_gemm.kernels import cuda as flexgemm_kernels

__all__ = [
    "mesh_to_flexible_dual_grid",
    "flexible_dual_grid_to_mesh",
]

@torch.no_grad()
def mesh_to_flexible_dual_grid(
    vertices: torch.Tensor,
    faces: torch.Tensor,
    voxel_size: Union[float, list, tuple, np.ndarray, torch.Tensor] = None,
    grid_size: Union[int, list, tuple, np.ndarray, torch.Tensor] = None,
    aabb: Union[list, tuple, np.ndarray, torch.Tensor] = None,
    face_weight: float = 1.0,
    boundary_weight: float = 1.0,
    regularization_weight: float = 0.1,
    timing: bool = False,
) -> Union[torch.Tensor, torch.Tensor, torch.Tensor]:
    """
    Voxelize a mesh into a sparse voxel grid.
    
    Args:
        vertices (torch.Tensor): The vertices of the mesh.
        faces (torch.Tensor): The faces of the mesh.
        voxel_size (float, list, tuple, np.ndarray, torch.Tensor): The size of each voxel.
        grid_size (int, list, tuple, np.ndarray, torch.Tensor): The size of the grid.
            NOTE: One of voxel_size and grid_size must be provided.
        aabb (list, tuple, np.ndarray, torch.Tensor): The axis-aligned bounding box of the mesh.
            If not provided, it will be computed automatically.
        face_weight (float): The weight of the face term in the dual contouring algorithm.
        boundary_weight (float): The weight of the boundary term in the dual contouring algorithm.
        regularization_weight (float): The weight of the regularization term in the dual contouring algorithm.
        timing (bool): Whether to time the voxelization process.
        
    Returns:
        torch.Tensor: The indices of the voxels that are occupied by the mesh.
            The shape of the tensor is (N, 3), where N is the number of occupied voxels.
        torch.Tensor: The dual vertices of the mesh.
        torch.Tensor: The intersected flag of each voxel.
    """
    
    # Load mesh
    vertices = vertices.float()
    faces = faces.int()

    # Voxelize settings
    assert voxel_size is not None or grid_size is not None, "Either voxel_size or grid_size must be provided"

    if voxel_size is not None:
        if isinstance(voxel_size, float):
            voxel_size = [voxel_size, voxel_size, voxel_size]
        if isinstance(voxel_size, (list, tuple)):
            voxel_size = np.array(voxel_size)
        if isinstance(voxel_size, np.ndarray):
            voxel_size = torch.tensor(voxel_size, dtype=torch.float32)
        assert isinstance(voxel_size, torch.Tensor), f"voxel_size must be a float, list, tuple, np.ndarray, or torch.Tensor, but got {type(voxel_size)}"
        assert voxel_size.dim() == 1, f"voxel_size must be a 1D tensor, but got {voxel_size.shape}"
        assert voxel_size.size(0) == 3, f"voxel_size must have 3 elements, but got {voxel_size.size(0)}"

    if grid_size is not None:
        if isinstance(grid_size, int):
            grid_size = [grid_size, grid_size, grid_size]
        if isinstance(grid_size, (list, tuple)):
            grid_size = np.array(grid_size)
        if isinstance(grid_size, np.ndarray):
            grid_size = torch.tensor(grid_size, dtype=torch.int32)
        assert isinstance(grid_size, torch.Tensor), f"grid_size must be an int, list, tuple, np.ndarray, or torch.Tensor, but got {type(grid_size)}"
        assert grid_size.dim() == 1, f"grid_size must be a 1D tensor, but got {grid_size.shape}"
        assert grid_size.size(0) == 3, f"grid_size must have 3 elements, but got {grid_size.size(0)}"

    if aabb is not None:
        if isinstance(aabb, (list, tuple)):
            aabb = np.array(aabb)
        if isinstance(aabb, np.ndarray):
            aabb = torch.tensor(aabb, dtype=torch.float32)
        assert isinstance(aabb, torch.Tensor), f"aabb must be a list, tuple, np.ndarray, or torch.Tensor, but got {type(aabb)}"
        assert aabb.dim() == 2, f"aabb must be a 2D tensor, but got {aabb.shape}"
        assert aabb.size(0) == 2, f"aabb must have 2 rows, but got {aabb.size(0)}"
        assert aabb.size(1) == 3, f"aabb must have 3 columns, but got {aabb.size(1)}"

    # Auto adjust aabb
    if aabb is None:
        min_xyz = vertices.min(dim=0).values
        max_xyz = vertices.max(dim=0).values
        
        if voxel_size is not None:
            padding = torch.ceil((max_xyz - min_xyz) / voxel_size) * voxel_size - (max_xyz - min_xyz)
            min_xyz -= padding * 0.5
            max_xyz += padding * 0.5
        if grid_size is not None:
            padding = (max_xyz - min_xyz) / (grid_size - 1)
            min_xyz -= padding * 0.5
            max_xyz += padding * 0.5

        aabb = torch.stack([min_xyz, max_xyz], dim=0).float().cuda()

    # Fill voxel size or grid size
    if voxel_size is None:
        voxel_size = (aabb[1] - aabb[0]) / grid_size
    if grid_size is None:
        grid_size = ((aabb[1] - aabb[0]) / voxel_size).round().int()
        
    # subdivide mesh
    vertices = vertices - aabb[0].reshape(1, 3)
    grid_range = torch.stack([torch.zeros_like(grid_size), grid_size], dim=0).int()
    
    ret = _C.mesh_to_flexible_dual_grid_cpu(
        vertices,
        faces,
        voxel_size,
        grid_range,
        face_weight,
        boundary_weight,
        regularization_weight,
        timing,
    )
    
    return ret


def flexible_dual_grid_to_mesh(
    coords: torch.Tensor,
    dual_vertices: torch.Tensor,
    intersected_flag: torch.Tensor,
    split_weight: Union[torch.Tensor, None],
    aabb: Union[list, tuple, np.ndarray, torch.Tensor],
    voxel_size: Union[float, list, tuple, np.ndarray, torch.Tensor] = None,
    grid_size: Union[int, list, tuple, np.ndarray, torch.Tensor] = None,
    train: bool = False,
):
    """
    Extract mesh from sparse voxel structures using flexible dual grid.
    
    Args:
        coords (torch.Tensor): The coordinates of the voxels.
        dual_vertices (torch.Tensor): The dual vertices.
        intersected_flag (torch.Tensor): The intersected flag.
        split_weight (torch.Tensor): The split weight of each dual quad. If None, the algorithm
            will split based on minimum angle.
        aabb (list, tuple, np.ndarray, torch.Tensor): The axis-aligned bounding box of the mesh.
        voxel_size (float, list, tuple, np.ndarray, torch.Tensor): The size of each voxel.
        grid_size (int, list, tuple, np.ndarray, torch.Tensor): The size of the grid.
            NOTE: One of voxel_size and grid_size must be provided.
        train (bool): Whether to use training mode.
        
    Returns:
        vertices (torch.Tensor): The vertices of the mesh.
        faces (torch.Tensor): The faces of the mesh.
    """
    # Static variables
    if not hasattr(flexible_dual_grid_to_mesh, "edge_neighbor_voxel_offset"):
        flexible_dual_grid_to_mesh.edge_neighbor_voxel_offset = torch.tensor([
            [[0, 0, 0], [0, 0, 1], [0, 1, 1], [0, 1, 0]],     # x-axis
            [[0, 0, 0], [1, 0, 0], [1, 0, 1], [0, 0, 1]],     # y-axis
            [[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0]],     # z-axis
        ], dtype=torch.int, device=coords.device).unsqueeze(0)
    if not hasattr(flexible_dual_grid_to_mesh, "quad_split_1"):
        flexible_dual_grid_to_mesh.quad_split_1 = torch.tensor([0, 1, 2, 0, 2, 3], dtype=torch.long, device=coords.device, requires_grad=False)
    if not hasattr(flexible_dual_grid_to_mesh, "quad_split_2"):
        flexible_dual_grid_to_mesh.quad_split_2 = torch.tensor([0, 1, 3, 3, 1, 2], dtype=torch.long, device=coords.device, requires_grad=False)
    if not hasattr(flexible_dual_grid_to_mesh, "quad_split_train"):
        flexible_dual_grid_to_mesh.quad_split_train = torch.tensor([0, 1, 4, 1, 2, 4, 2, 3, 4, 3, 0, 4], dtype=torch.long, device=coords.device, requires_grad=False)

    # AABB
    if isinstance(aabb, (list, tuple)):
        aabb = np.array(aabb)
    if isinstance(aabb, np.ndarray):
        aabb = torch.tensor(aabb, dtype=torch.float32, device=coords.device)
    assert isinstance(aabb, torch.Tensor), f"aabb must be a list, tuple, np.ndarray, or torch.Tensor, but got {type(aabb)}"
    assert aabb.dim() == 2, f"aabb must be a 2D tensor, but got {aabb.shape}"
    assert aabb.size(0) == 2, f"aabb must have 2 rows, but got {aabb.size(0)}"
    assert aabb.size(1) == 3, f"aabb must have 3 columns, but got {aabb.size(1)}"

    # Voxel size
    if voxel_size is not None:
        if isinstance(voxel_size, float):
            voxel_size = [voxel_size, voxel_size, voxel_size]
        if isinstance(voxel_size, (list, tuple)):
            voxel_size = np.array(voxel_size)
        if isinstance(voxel_size, np.ndarray):
            voxel_size = torch.tensor(voxel_size, dtype=torch.float32, device=coords.device)
        grid_size = ((aabb[1] - aabb[0]) / voxel_size).round().int()
    else:
        assert grid_size is not None, "Either voxel_size or grid_size must be provided"
        if isinstance(grid_size, int):
            grid_size = [grid_size, grid_size, grid_size]
        if isinstance(grid_size, (list, tuple)):
            grid_size = np.array(grid_size)
        if isinstance(grid_size, np.ndarray):
            grid_size = torch.tensor(grid_size, dtype=torch.int32, device=coords.device)
        voxel_size = (aabb[1] - aabb[0]) / grid_size
    assert isinstance(voxel_size, torch.Tensor), f"voxel_size must be a float, list, tuple, np.ndarray, or torch.Tensor, but got {type(voxel_size)}"
    assert voxel_size.dim() == 1, f"voxel_size must be a 1D tensor, but got {voxel_size.shape}"
    assert voxel_size.size(0) == 3, f"voxel_size must have 3 elements, but got {voxel_size.size(0)}"
    assert isinstance(grid_size, torch.Tensor), f"grid_size must be an int, list, tuple, np.ndarray, or torch.Tensor, but got {type(grid_size)}"
    assert grid_size.dim() == 1, f"grid_size must be a 1D tensor, but got {grid_size.shape}"
    assert grid_size.size(0) == 3, f"grid_size must have 3 elements, but got {grid_size.size(0)}"

    # Extract mesh
    N = dual_vertices.shape[0]
    mesh_vertices = (coords.float() + dual_vertices) / (2 * N) - 0.5

    # Store active voxels into hashmap
    hashmap = torch.full((2 * int(2 * N),), 0xffffffff, dtype=torch.uint32, device=coords.device)
    flexgemm_kernels.hashmap_insert_3d_idx_as_val_cuda(hashmap, torch.cat([torch.zeros_like(coords[:, :1]), coords], dim=-1), *grid_size.tolist())

    # Find connected voxels
    edge_neighbor_voxel = coords.reshape(N, 1, 1, 3) + flexible_dual_grid_to_mesh.edge_neighbor_voxel_offset      # (N, 3, 4, 3)
    connected_voxel = edge_neighbor_voxel[intersected_flag]                           # (M, 4, 3)
    M = connected_voxel.shape[0]
    connected_voxel_hash_key = torch.cat([
        torch.zeros((M * 4, 1), dtype=torch.int, device=coords.device),
        connected_voxel.reshape(-1, 3)
    ], dim=1)
    connected_voxel_indices = flexgemm_kernels.hashmap_lookup_3d_cuda(hashmap, connected_voxel_hash_key, *grid_size.tolist()).reshape(M, 4).int()
    connected_voxel_valid = (connected_voxel_indices != 0xffffffff).all(dim=1)
    quad_indices = connected_voxel_indices[connected_voxel_valid].int()                             # (L, 4)
    L = quad_indices.shape[0]

    # Construct triangles
    if not train:
        mesh_vertices = (coords.float() + dual_vertices) * voxel_size + aabb[0].reshape(1, 3)
        if split_weight is None:
            # if split 1
            atempt_triangles_0 = quad_indices[:, flexible_dual_grid_to_mesh.quad_split_1]
            normals0 = torch.cross(mesh_vertices[atempt_triangles_0[:, 1]] - mesh_vertices[atempt_triangles_0[:, 0]], mesh_vertices[atempt_triangles_0[:, 2]] - mesh_vertices[atempt_triangles_0[:, 0]], dim=1)
            normals1 = torch.cross(mesh_vertices[atempt_triangles_0[:, 2]] - mesh_vertices[atempt_triangles_0[:, 1]], mesh_vertices[atempt_triangles_0[:, 3]] - mesh_vertices[atempt_triangles_0[:, 1]], dim=1)
            normals0 = normals0 / torch.norm(normals0, dim=1, keepdim=True)
            normals1 = normals1 / torch.norm(normals1, dim=1, keepdim=True)
            align0 = (normals0 * normals1).sum(dim=1, keepdim=True).abs()
            # if split 2
            atempt_triangles_1 = quad_indices[:, flexible_dual_grid_to_mesh.quad_split_2]
            normals0 = torch.cross(mesh_vertices[atempt_triangles_1[:, 1]] - mesh_vertices[atempt_triangles_1[:, 0]], mesh_vertices[atempt_triangles_1[:, 2]] - mesh_vertices[atempt_triangles_1[:, 0]], dim=1)
            normals1 = torch.cross(mesh_vertices[atempt_triangles_1[:, 2]] - mesh_vertices[atempt_triangles_1[:, 1]], mesh_vertices[atempt_triangles_1[:, 3]] - mesh_vertices[atempt_triangles_1[:, 1]], dim=1)
            normals0 = normals0 / torch.norm(normals0, dim=1, keepdim=True)
            normals1 = normals1 / torch.norm(normals1, dim=1, keepdim=True)
            align1 = (normals0 * normals1).sum(dim=1, keepdim=True).abs()
            # select split
            mesh_triangles = torch.where(align0 > align1, atempt_triangles_0, atempt_triangles_1).reshape(-1, 3)
        else:
            split_weight_ws = split_weight[quad_indices]
            split_weight_ws_02 = split_weight_ws[:, 0] * split_weight_ws[:, 2]
            split_weight_ws_13 = split_weight_ws[:, 1] * split_weight_ws[:, 3]
            mesh_triangles = torch.where(
                split_weight_ws_02 > split_weight_ws_13,
                quad_indices[:, flexible_dual_grid_to_mesh.quad_split_1],
                quad_indices[:, flexible_dual_grid_to_mesh.quad_split_2]
            ).reshape(-1, 3)
    else:
        assert split_weight is not None, "split_weight must be provided in training mode"
        mesh_vertices = (coords.float() + dual_vertices) * voxel_size + aabb[0].reshape(1, 3)
        quad_vs = mesh_vertices[quad_indices]
        mean_v02 = (quad_vs[:, 0] + quad_vs[:, 2]) / 2
        mean_v13 = (quad_vs[:, 1] + quad_vs[:, 3]) / 2
        split_weight_ws = split_weight[quad_indices]
        split_weight_ws_02 = split_weight_ws[:, 0] * split_weight_ws[:, 2]
        split_weight_ws_13 = split_weight_ws[:, 1] * split_weight_ws[:, 3]
        mid_vertices = (
            split_weight_ws_02 * mean_v02 +
            split_weight_ws_13 * mean_v13
        ) / (split_weight_ws_02 + split_weight_ws_13)
        mesh_vertices = torch.cat([mesh_vertices, mid_vertices], dim=0)
        quad_indices = torch.cat([quad_indices, torch.arange(N, N + L, device='cuda').unsqueeze(1)], dim=1)
        mesh_triangles = quad_indices[:, flexible_dual_grid_to_mesh.quad_split_train].reshape(-1, 3)
    
    return mesh_vertices, mesh_triangles