Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,16 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
import joblib
|
| 6 |
-
|
| 7 |
from transformers import AutoTokenizer, AutoModel
|
| 8 |
-
from huggingface_hub import hf_hub_download
|
| 9 |
from keras.models import load_model
|
| 10 |
from goatools.obo_parser import GODag
|
| 11 |
|
| 12 |
-
|
| 13 |
-
from huggingface_hub import login
|
| 14 |
-
|
| 15 |
login(os.environ["HF_TOKEN"])
|
|
|
|
| 16 |
# βββββββββββββββββββ CONFIG βββββββββββββββββββ #
|
| 17 |
SPACE_ID = "melvinalves/protein_function_prediction"
|
| 18 |
TOP_N = 10
|
|
@@ -20,36 +18,63 @@ THRESH = 0.37
|
|
| 20 |
CHUNK_PB = 512
|
| 21 |
CHUNK_ESM = 1024
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
# βββββββββββββββββββ HELPERS βββββββββββββββββββ #
|
| 24 |
@st.cache_resource
|
| 25 |
def download_file(path):
|
|
|
|
|
|
|
| 26 |
return hf_hub_download(repo_id=SPACE_ID, repo_type="space", filename=path)
|
| 27 |
|
| 28 |
@st.cache_resource
|
| 29 |
def load_keras(name):
|
|
|
|
| 30 |
return load_model(download_file(f"models/{name}"), compile=False)
|
| 31 |
|
| 32 |
@st.cache_resource
|
| 33 |
-
def load_hf_encoder(
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
mdl.eval()
|
| 37 |
return tok, mdl
|
| 38 |
|
| 39 |
-
def embed_seq(
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
parts = [seq[i:i+chunk] for i in range(0, len(seq), chunk)]
|
| 42 |
-
vecs
|
| 43 |
for p in parts:
|
|
|
|
| 44 |
with torch.no_grad():
|
| 45 |
-
out = mdl(**
|
| 46 |
-
vecs.append(out.last_hidden_state[:, 0, :].
|
| 47 |
return np.mean(vecs, axis=0, keepdims=True)
|
| 48 |
|
| 49 |
@st.cache_resource
|
| 50 |
def load_go_info():
|
| 51 |
obo_path = download_file("data/go.obo")
|
| 52 |
-
dag = GODag(obo_path, optional_attrs=[
|
| 53 |
return {tid: (term.name, term.defn) for tid, term in dag.items()}
|
| 54 |
|
| 55 |
GO_INFO = load_go_info()
|
|
@@ -67,9 +92,7 @@ GO = mlb.classes_
|
|
| 67 |
st.title("PrediΓ§Γ£o de FunΓ§Γ΅es Moleculares de ProteΓnas")
|
| 68 |
|
| 69 |
st.markdown(
|
| 70 |
-
""
|
| 71 |
-
<style> textarea { font-size: 0.9rem !important; } </style>
|
| 72 |
-
""",
|
| 73 |
unsafe_allow_html=True,
|
| 74 |
)
|
| 75 |
|
|
@@ -78,58 +101,55 @@ predict_clicked = st.button("Prever GO terms")
|
|
| 78 |
|
| 79 |
# βββββββββββββββββββ PARSE DE MΓLTIPLAS SEQUΓNCIAS βββββββββββββββββββ #
|
| 80 |
def parse_fasta_multiple(fasta_str):
|
| 81 |
-
entries = fasta_str.strip().split(">")
|
| 82 |
-
parsed = []
|
| 83 |
-
|
| 84 |
for i, entry in enumerate(entries):
|
| 85 |
if not entry.strip():
|
| 86 |
continue
|
| 87 |
-
|
| 88 |
lines = entry.strip().splitlines()
|
| 89 |
-
|
| 90 |
-
# Verifica se estamos num bloco com '>'
|
| 91 |
if i > 0:
|
| 92 |
header = lines[0].strip()
|
| 93 |
-
seq = "".join(
|
| 94 |
else:
|
| 95 |
-
# Entrada sem '>', trata tudo como sequΓͺncia
|
| 96 |
header = f"Seq_{i+1}"
|
| 97 |
-
seq = "".join(
|
| 98 |
-
|
| 99 |
if seq:
|
| 100 |
parsed.append((header, seq))
|
| 101 |
return parsed
|
| 102 |
|
|
|
|
| 103 |
if predict_clicked:
|
| 104 |
parsed_seqs = parse_fasta_multiple(fasta_input)
|
| 105 |
-
|
| 106 |
if not parsed_seqs:
|
| 107 |
st.warning("NΓ£o foi possΓvel encontrar nenhuma sequΓͺncia vΓ‘lida.")
|
| 108 |
st.stop()
|
| 109 |
|
| 110 |
for header, seq in parsed_seqs:
|
| 111 |
with st.spinner(f"A processar {header}β¦ (pode demorar alguns minutos)"):
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
| 115 |
|
|
|
|
| 116 |
y_pb = mlp_pb.predict(emb_pb)
|
| 117 |
y_bfd = mlp_bfd.predict(emb_bfd)
|
| 118 |
y_esm = mlp_esm.predict(emb_esm)[:, :597]
|
|
|
|
|
|
|
| 119 |
X = np.concatenate([y_pb, y_bfd, y_esm], axis=1)
|
| 120 |
y_ens = stacking.predict(X)
|
| 121 |
|
| 122 |
# βββββββββββββββββββ RESULTADOS βββββββββββββββββββ #
|
| 123 |
-
def
|
| 124 |
with st.expander(tag, expanded=True):
|
| 125 |
hits = mlb.inverse_transform((y_pred >= THRESH).astype(int))[0]
|
| 126 |
st.markdown(f"**GO terms com prob β₯ {THRESH}**")
|
| 127 |
if hits:
|
| 128 |
for go_id in hits:
|
| 129 |
name, defin = GO_INFO.get(go_id, ("β sem nome β", ""))
|
| 130 |
-
|
| 131 |
st.write(f"**{go_id} β {name}**")
|
| 132 |
-
st.caption(
|
| 133 |
else:
|
| 134 |
st.code("β nenhum β")
|
| 135 |
|
|
@@ -139,9 +159,8 @@ if predict_clicked:
|
|
| 139 |
name, _ = GO_INFO.get(go_id, ("", ""))
|
| 140 |
st.write(f"{go_id} β {name} : {y_pred[0][idx]:.4f}")
|
| 141 |
|
| 142 |
-
#
|
| 143 |
-
|
| 144 |
-
#
|
| 145 |
-
#
|
| 146 |
-
|
| 147 |
-
mostrar(f"{header}", y_ens)
|
|
|
|
| 1 |
+
# -------------------------------------------------------------------------------------------------
|
| 2 |
+
# app.py β Streamlit app para prediΓ§Γ£o de GO:MF
|
| 3 |
+
# VersΓ£o: usa ProtBERT & ProtBERT-BFD fine-tuned (melvinalves/FineTune) + ESM-2 base
|
| 4 |
+
# -------------------------------------------------------------------------------------------------
|
| 5 |
+
import os, re, numpy as np, torch, joblib, streamlit as st
|
| 6 |
+
from huggingface_hub import login
|
| 7 |
from transformers import AutoTokenizer, AutoModel
|
|
|
|
| 8 |
from keras.models import load_model
|
| 9 |
from goatools.obo_parser import GODag
|
| 10 |
|
| 11 |
+
# βββββββββββββββββββ AUTHENTICAΓΓO βββββββββββββββββββ #
|
|
|
|
|
|
|
| 12 |
login(os.environ["HF_TOKEN"])
|
| 13 |
+
|
| 14 |
# βββββββββββββββββββ CONFIG βββββββββββββββββββ #
|
| 15 |
SPACE_ID = "melvinalves/protein_function_prediction"
|
| 16 |
TOP_N = 10
|
|
|
|
| 18 |
CHUNK_PB = 512
|
| 19 |
CHUNK_ESM = 1024
|
| 20 |
|
| 21 |
+
# RepositΓ³rios dos modelos
|
| 22 |
+
FINETUNED_PB = ("melvinalves/FineTune", "fineTunedProtbert")
|
| 23 |
+
FINETUNED_BFD = ("melvinalves/FineTune", "fineTunedProtbertbfd")
|
| 24 |
+
BASE_ESM = "facebook/esm2_t33_650M_UR50D"
|
| 25 |
+
|
| 26 |
# βββββββββββββββββββ HELPERS βββββββββββββββββββ #
|
| 27 |
@st.cache_resource
|
| 28 |
def download_file(path):
|
| 29 |
+
"""Ficheiros pequenos guardados no repositΓ³rio do Space (β€1 GB total)."""
|
| 30 |
+
from huggingface_hub import hf_hub_download
|
| 31 |
return hf_hub_download(repo_id=SPACE_ID, repo_type="space", filename=path)
|
| 32 |
|
| 33 |
@st.cache_resource
|
| 34 |
def load_keras(name):
|
| 35 |
+
"""Carrega modelos Keras (MLPs + stacking)."""
|
| 36 |
return load_model(download_file(f"models/{name}"), compile=False)
|
| 37 |
|
| 38 |
@st.cache_resource
|
| 39 |
+
def load_hf_encoder(repo_id, subfolder=None, base_tok="Rostlab/prot_bert"):
|
| 40 |
+
"""
|
| 41 |
+
Carrega um encoder HF (PyTorch) β se existir apenas tf_model.h5 no repo,
|
| 42 |
+
usa from_tf=True para converter on-the-fly.
|
| 43 |
+
"""
|
| 44 |
+
tok = AutoTokenizer.from_pretrained(base_tok, do_lower_case=False)
|
| 45 |
+
mdl = AutoModel.from_pretrained(
|
| 46 |
+
repo_id,
|
| 47 |
+
subfolder=subfolder,
|
| 48 |
+
from_tf=True, # converte pesos TF se necessΓ‘rio
|
| 49 |
+
)
|
| 50 |
mdl.eval()
|
| 51 |
return tok, mdl
|
| 52 |
|
| 53 |
+
def embed_seq(model_ref, seq, chunk):
|
| 54 |
+
"""
|
| 55 |
+
Extrai embedding mΓ©dio (CLS) para sequΓͺncias grandes usando chunks.
|
| 56 |
+
- model_ref pode ser string (modelo base) ou tuple (repo_id, subfolder) p/ fine-tuned.
|
| 57 |
+
"""
|
| 58 |
+
if isinstance(model_ref, tuple):
|
| 59 |
+
tok, mdl = load_hf_encoder(*model_ref)
|
| 60 |
+
else:
|
| 61 |
+
# mantΓ©m o tokenizer apropriado
|
| 62 |
+
base_tok = "Rostlab/prot_bert" if "prot_bert" in model_ref else model_ref
|
| 63 |
+
tok, mdl = load_hf_encoder(model_ref, base_tok=base_tok)
|
| 64 |
+
|
| 65 |
parts = [seq[i:i+chunk] for i in range(0, len(seq), chunk)]
|
| 66 |
+
vecs = []
|
| 67 |
for p in parts:
|
| 68 |
+
tokens = tok(" ".join(p), return_tensors="pt", truncation=False)
|
| 69 |
with torch.no_grad():
|
| 70 |
+
out = mdl(**{k: v.to(mdl.device) for k, v in tokens.items()})
|
| 71 |
+
vecs.append(out.last_hidden_state[:, 0, :].cpu().numpy())
|
| 72 |
return np.mean(vecs, axis=0, keepdims=True)
|
| 73 |
|
| 74 |
@st.cache_resource
|
| 75 |
def load_go_info():
|
| 76 |
obo_path = download_file("data/go.obo")
|
| 77 |
+
dag = GODag(obo_path, optional_attrs=["defn"])
|
| 78 |
return {tid: (term.name, term.defn) for tid, term in dag.items()}
|
| 79 |
|
| 80 |
GO_INFO = load_go_info()
|
|
|
|
| 92 |
st.title("PrediΓ§Γ£o de FunΓ§Γ΅es Moleculares de ProteΓnas")
|
| 93 |
|
| 94 |
st.markdown(
|
| 95 |
+
"<style> textarea { font-size: 0.9rem !important; } </style>",
|
|
|
|
|
|
|
| 96 |
unsafe_allow_html=True,
|
| 97 |
)
|
| 98 |
|
|
|
|
| 101 |
|
| 102 |
# βββββββββββββββββββ PARSE DE MΓLTIPLAS SEQUΓNCIAS βββββββββββββββββββ #
|
| 103 |
def parse_fasta_multiple(fasta_str):
|
| 104 |
+
entries, parsed = fasta_str.strip().split(">"), []
|
|
|
|
|
|
|
| 105 |
for i, entry in enumerate(entries):
|
| 106 |
if not entry.strip():
|
| 107 |
continue
|
|
|
|
| 108 |
lines = entry.strip().splitlines()
|
|
|
|
|
|
|
| 109 |
if i > 0:
|
| 110 |
header = lines[0].strip()
|
| 111 |
+
seq = "".join(lines[1:]).replace(" ", "").upper()
|
| 112 |
else:
|
|
|
|
| 113 |
header = f"Seq_{i+1}"
|
| 114 |
+
seq = "".join(lines).replace(" ", "").upper()
|
|
|
|
| 115 |
if seq:
|
| 116 |
parsed.append((header, seq))
|
| 117 |
return parsed
|
| 118 |
|
| 119 |
+
# βββββββββββββββββββ INFERΓNCIA βββββββββββββββββββ #
|
| 120 |
if predict_clicked:
|
| 121 |
parsed_seqs = parse_fasta_multiple(fasta_input)
|
|
|
|
| 122 |
if not parsed_seqs:
|
| 123 |
st.warning("NΓ£o foi possΓvel encontrar nenhuma sequΓͺncia vΓ‘lida.")
|
| 124 |
st.stop()
|
| 125 |
|
| 126 |
for header, seq in parsed_seqs:
|
| 127 |
with st.spinner(f"A processar {header}β¦ (pode demorar alguns minutos)"):
|
| 128 |
+
# βββ Embeddings βββ #
|
| 129 |
+
emb_pb = embed_seq(FINETUNED_PB, seq, CHUNK_PB)
|
| 130 |
+
emb_bfd = embed_seq(FINETUNED_BFD, seq, CHUNK_PB)
|
| 131 |
+
emb_esm = embed_seq(BASE_ESM, seq, CHUNK_ESM)
|
| 132 |
|
| 133 |
+
# βββ PrediΓ§Γ΅es dos MLPs βββ #
|
| 134 |
y_pb = mlp_pb.predict(emb_pb)
|
| 135 |
y_bfd = mlp_bfd.predict(emb_bfd)
|
| 136 |
y_esm = mlp_esm.predict(emb_esm)[:, :597]
|
| 137 |
+
|
| 138 |
+
# βββ Stacking βββ #
|
| 139 |
X = np.concatenate([y_pb, y_bfd, y_esm], axis=1)
|
| 140 |
y_ens = stacking.predict(X)
|
| 141 |
|
| 142 |
# βββββββββββββββββββ RESULTADOS βββββββββββββββββββ #
|
| 143 |
+
def mostrar_resultados(tag, y_pred):
|
| 144 |
with st.expander(tag, expanded=True):
|
| 145 |
hits = mlb.inverse_transform((y_pred >= THRESH).astype(int))[0]
|
| 146 |
st.markdown(f"**GO terms com prob β₯ {THRESH}**")
|
| 147 |
if hits:
|
| 148 |
for go_id in hits:
|
| 149 |
name, defin = GO_INFO.get(go_id, ("β sem nome β", ""))
|
| 150 |
+
limp = re.sub(r'^\s*"?(.+?)"?\s*(\[[^\]]*\])?\s*$', r'\1', defin or "")
|
| 151 |
st.write(f"**{go_id} β {name}**")
|
| 152 |
+
st.caption(limp)
|
| 153 |
else:
|
| 154 |
st.code("β nenhum β")
|
| 155 |
|
|
|
|
| 159 |
name, _ = GO_INFO.get(go_id, ("", ""))
|
| 160 |
st.write(f"{go_id} β {name} : {y_pred[0][idx]:.4f}")
|
| 161 |
|
| 162 |
+
# Mostrar apenas ensemble (descomenta se quiseres os individuais)
|
| 163 |
+
# mostrar_resultados(f"{header} β ProtBERT", y_pb)
|
| 164 |
+
# mostrar_resultados(f"{header} β ProtBERT-BFD", y_bfd)
|
| 165 |
+
# mostrar_resultados(f"{header} β ESM-2", y_esm)
|
| 166 |
+
mostrar_resultados(header, y_ens)
|
|
|