Update app.py
Browse files
app.py
CHANGED
|
@@ -14,10 +14,10 @@ login(os.environ["HF_TOKEN"])
|
|
| 14 |
|
| 15 |
# βββββββββββββββββββ CONFIG βββββββββββββββββββ #
|
| 16 |
SPACE_ID = "melvinalves/protein_function_prediction"
|
| 17 |
-
TOP_N =
|
| 18 |
THRESH = 0.37
|
| 19 |
-
CHUNK_PB = 512
|
| 20 |
-
CHUNK_ESM = 1024
|
| 21 |
|
| 22 |
# repositΓ³rios HF
|
| 23 |
FINETUNED_PB = ("melvinalves/FineTune", "fineTunedProtbert")
|
|
@@ -97,11 +97,25 @@ mlb = joblib.load(download_file("data/mlb_597.pkl"))
|
|
| 97 |
GO = mlb.classes_
|
| 98 |
|
| 99 |
# βββββββββββββββββββ UI βββββββββββββββββββ #
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
fasta_input = st.text_area("Insere uma ou mais sequΓͺncias FASTA:", height=300)
|
| 107 |
predict_clicked = st.button("Prever GO terms")
|
|
@@ -127,6 +141,48 @@ def parse_fasta_multiple(fasta_str):
|
|
| 127 |
parsed.append((header, seq))
|
| 128 |
return parsed
|
| 129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
# βββββββββββββββββββ INFERΓNCIA βββββββββββββββββββ #
|
| 131 |
if predict_clicked:
|
| 132 |
parsed_seqs = parse_fasta_multiple(fasta_input)
|
|
@@ -150,32 +206,12 @@ if predict_clicked:
|
|
| 150 |
X = np.concatenate([y_pb, y_bfd, y_esm], axis=1)
|
| 151 |
y_ens = stacking.predict(X)
|
| 152 |
|
| 153 |
-
#
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
defin = re.sub(r'^\s*"?(.+?)"?\s*(\[[^\]]*\])?\s*$', r'\1',
|
| 163 |
-
defin or "")
|
| 164 |
-
st.write(f"**{go_id} β {name}**")
|
| 165 |
-
st.caption(defin)
|
| 166 |
-
else:
|
| 167 |
-
st.code("β nenhum β")
|
| 168 |
-
|
| 169 |
-
# Top-N mais provΓ‘veis
|
| 170 |
-
st.markdown(f"**Top {TOP_N} GO terms mais provΓ‘veis**")
|
| 171 |
-
for idx in np.argsort(-y_pred[0])[:TOP_N]:
|
| 172 |
-
go_id = GO[idx]
|
| 173 |
-
name, _ = GO_INFO.get(go_id, ("", ""))
|
| 174 |
-
st.write(f"{go_id} β {name} : {y_pred[0][idx]:.4f}")
|
| 175 |
-
|
| 176 |
-
# βββββββββββββββββββ ESCOLHE QUAIS MOSTRAR βββββββββββββββββββ #
|
| 177 |
-
# Descomenta se quiseres ver as saΓdas individuais
|
| 178 |
-
# mostrar(f"{header} β ProtBERT (MLP)", y_pb)
|
| 179 |
-
# mostrar(f"{header} β ProtBERT-BFD (MLP)", y_bfd)
|
| 180 |
-
# mostrar(f"{header} β ESM-2 (MLP)", y_esm)
|
| 181 |
-
mostrar(header, y_ens) # ensemble
|
|
|
|
| 14 |
|
| 15 |
# βββββββββββββββββββ CONFIG βββββββββββββββββββ #
|
| 16 |
SPACE_ID = "melvinalves/protein_function_prediction"
|
| 17 |
+
TOP_N = 20 # mostra agora top-20
|
| 18 |
THRESH = 0.37
|
| 19 |
+
CHUNK_PB = 512 # janela ProtBERT / ProtBERT-BFD
|
| 20 |
+
CHUNK_ESM = 1024 # janela ESM-2
|
| 21 |
|
| 22 |
# repositΓ³rios HF
|
| 23 |
FINETUNED_PB = ("melvinalves/FineTune", "fineTunedProtbert")
|
|
|
|
| 97 |
GO = mlb.classes_
|
| 98 |
|
| 99 |
# βββββββββββββββββββ UI βββββββββββββββββββ #
|
| 100 |
+
# --- aspecto geral
|
| 101 |
+
st.set_page_config(page_title="PrediΓ§Γ£o de FunΓ§Γ΅es Moleculares de ProteΓnas",
|
| 102 |
+
page_icon="π§¬", layout="centered")
|
| 103 |
+
|
| 104 |
+
# fundo branco + pequenos ajustes de margem/padding
|
| 105 |
+
st.markdown("""
|
| 106 |
+
<style>
|
| 107 |
+
body { background-color: #FFFFFF; }
|
| 108 |
+
.block-container{ padding-top: 1.5rem; }
|
| 109 |
+
textarea { font-size: 0.9rem !important; }
|
| 110 |
+
</style>
|
| 111 |
+
""", unsafe_allow_html=True)
|
| 112 |
+
|
| 113 |
+
# logo (coloca um ficheiro logo.png na pasta raiz do Space)
|
| 114 |
+
LOGO_PATH = "logo.png"
|
| 115 |
+
if os.path.exists(LOGO_PATH):
|
| 116 |
+
st.image(LOGO_PATH, width=180)
|
| 117 |
+
|
| 118 |
+
st.title("PrediΓ§Γ£o de FunΓ§Γ΅es Moleculares de ProteΓnas (GO:MF)")
|
| 119 |
|
| 120 |
fasta_input = st.text_area("Insere uma ou mais sequΓͺncias FASTA:", height=300)
|
| 121 |
predict_clicked = st.button("Prever GO terms")
|
|
|
|
| 141 |
parsed.append((header, seq))
|
| 142 |
return parsed
|
| 143 |
|
| 144 |
+
# βββββββββββββββββββ FUNΓΓES AUXILIARES DE LAYOUT βββββββββββββββββββ #
|
| 145 |
+
def go_link(go_id, name=""):
|
| 146 |
+
"""Cria link para pΓ‘gina do GO term (QuickGO)."""
|
| 147 |
+
url = f"https://www.ebi.ac.uk/QuickGO/term/{go_id}"
|
| 148 |
+
label = f"{go_id} β {name}" if name else go_id
|
| 149 |
+
return f"[{label}]({url})"
|
| 150 |
+
|
| 151 |
+
def prot_link(header):
|
| 152 |
+
"""Tenta gerar link para UniProt usando o primeiro token do header."""
|
| 153 |
+
pid = header.split()[0]
|
| 154 |
+
url = f"https://www.uniprot.org/uniprotkb/{pid}"
|
| 155 |
+
return f"[{header}]({url})"
|
| 156 |
+
|
| 157 |
+
# βββββββββββββββββββ FUNΓΓO PRINCIPAL DE RESULTADOS βββββββββββββββββββ #
|
| 158 |
+
def mostrar(tag, y_pred):
|
| 159 |
+
"""Mostra resultados em duas colunas dentro de um expander."""
|
| 160 |
+
with st.expander(tag, expanded=True):
|
| 161 |
+
col1, col2 = st.columns(2)
|
| 162 |
+
|
| 163 |
+
# βββ coluna 1 : termos acima do threshold
|
| 164 |
+
with col1:
|
| 165 |
+
st.markdown(f"**GO terms com prob β₯ {THRESH}**")
|
| 166 |
+
hits = mlb.inverse_transform((y_pred >= THRESH).astype(int))[0]
|
| 167 |
+
if hits:
|
| 168 |
+
for go_id in hits:
|
| 169 |
+
name, defin = GO_INFO.get(go_id, ("β sem nome β", ""))
|
| 170 |
+
defin = re.sub(r'^\\s*"?(.+?)"?\\s*(\\[[^\\]]*\\])?\\s*$', r'\\1',
|
| 171 |
+
defin or "")
|
| 172 |
+
st.markdown(f"- {go_link(go_id, name)} ")
|
| 173 |
+
if defin:
|
| 174 |
+
st.caption(defin)
|
| 175 |
+
else:
|
| 176 |
+
st.code("β nenhum β")
|
| 177 |
+
|
| 178 |
+
# βββ coluna 2 : top-N mais provΓ‘veis
|
| 179 |
+
with col2:
|
| 180 |
+
st.markdown(f"**Top {TOP_N} GO terms mais provΓ‘veis**")
|
| 181 |
+
for rank, idx in enumerate(np.argsort(-y_pred[0])[:TOP_N], start=1):
|
| 182 |
+
go_id = GO[idx]
|
| 183 |
+
name, _ = GO_INFO.get(go_id, ("", ""))
|
| 184 |
+
st.markdown(f"{rank}. {go_link(go_id, name)} : {y_pred[0][idx]:.4f}")
|
| 185 |
+
|
| 186 |
# βββββββββββββββββββ INFERΓNCIA βββββββββββββββββββ #
|
| 187 |
if predict_clicked:
|
| 188 |
parsed_seqs = parse_fasta_multiple(fasta_input)
|
|
|
|
| 206 |
X = np.concatenate([y_pb, y_bfd, y_esm], axis=1)
|
| 207 |
y_ens = stacking.predict(X)
|
| 208 |
|
| 209 |
+
# header como link para UniProt
|
| 210 |
+
mostrar(prot_link(header), y_ens)
|
| 211 |
+
|
| 212 |
+
# βββββββββββββββββββ LISTA COMPLETA DE TERMOS SUPORTADOS βββββββββββββββββββ #
|
| 213 |
+
with st.expander("Mostrar lista completa dos 597 GO terms possΓveis", expanded=False):
|
| 214 |
+
cols = st.columns(3)
|
| 215 |
+
for i, go_id in enumerate(GO):
|
| 216 |
+
name, _ = GO_INFO.get(go_id, ("", ""))
|
| 217 |
+
cols[i % 3].markdown(f"- {go_link(go_id, name)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|