Update app.py
Browse files
app.py
CHANGED
|
@@ -7,42 +7,31 @@ from transformers import AutoTokenizer, AutoModel
|
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
from keras.models import load_model
|
| 9 |
|
| 10 |
-
# βββββββββββββββββββ
|
| 11 |
-
SPACE_ID
|
| 12 |
-
TOP_N
|
| 13 |
-
THRESH
|
| 14 |
-
CHUNK_PB
|
| 15 |
-
CHUNK_ESM
|
| 16 |
-
|
| 17 |
-
# βββββββββββββββββββ HELPERS
|
| 18 |
@st.cache_resource
|
| 19 |
-
def download_file(
|
| 20 |
-
return hf_hub_download(repo_id=SPACE_ID, repo_type="space", filename=
|
| 21 |
|
| 22 |
@st.cache_resource
|
| 23 |
-
def load_keras(
|
| 24 |
-
return load_model(download_file(f"models/{
|
| 25 |
|
| 26 |
@st.cache_resource
|
| 27 |
-
def load_hf_encoder(
|
| 28 |
-
tok = AutoTokenizer.from_pretrained(
|
| 29 |
-
mdl = AutoModel.from_pretrained(
|
| 30 |
mdl.eval()
|
| 31 |
return tok, mdl
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
mlp_bfd = load_keras("mlp_protbertbfd.h5")
|
| 36 |
-
mlp_esm = load_keras("mlp_esm2.h5")
|
| 37 |
-
stacking = load_keras("ensemble_stack.h5") # usa o nome que tiveres guardado
|
| 38 |
-
|
| 39 |
-
# βββββββββββββββββββ LABEL BINARIZER βββββββββββββββββββ #
|
| 40 |
-
mlb = joblib.load(download_file("data/mlb_597.pkl"))
|
| 41 |
-
GO_TERMS = mlb.classes_
|
| 42 |
-
|
| 43 |
-
# βββββββββββββββββββ EMBEDDINGS βββββββββββββββββββ #
|
| 44 |
-
def embed_seq(model_name: str, seq: str, chunk: int) -> np.ndarray:
|
| 45 |
-
tok, mdl = load_hf_encoder(model_name)
|
| 46 |
parts = [seq[i:i+chunk] for i in range(0, len(seq), chunk)]
|
| 47 |
vecs = []
|
| 48 |
for p in parts:
|
|
@@ -51,6 +40,15 @@ def embed_seq(model_name: str, seq: str, chunk: int) -> np.ndarray:
|
|
| 51 |
vecs.append(out.last_hidden_state[:, 0, :].squeeze().numpy())
|
| 52 |
return np.mean(vecs, axis=0, keepdims=True)
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
# βββββββββββββββββββ UI βββββββββββββββββββ #
|
| 55 |
st.title("π¬ PrediΓ§Γ£o de FunΓ§Γ΅es de ProteΓnas")
|
| 56 |
|
|
@@ -61,47 +59,42 @@ st.markdown(
|
|
| 61 |
unsafe_allow_html=True,
|
| 62 |
)
|
| 63 |
|
| 64 |
-
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
-
if fasta and st.button("Prever GO terms"):
|
| 68 |
-
seq = "\n".join(l for l in fasta.splitlines() if not l.startswith(">"))
|
| 69 |
-
seq = seq.replace(" ", "").replace("\n", "").upper()
|
| 70 |
|
|
|
|
|
|
|
| 71 |
if not seq:
|
| 72 |
-
st.warning("Por favor, insere uma sequΓͺncia vΓ‘lida.")
|
| 73 |
st.stop()
|
| 74 |
|
| 75 |
-
# 1) EMBEDDINGS
|
| 76 |
-
st.
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
# 2) PREDIΓΓES
|
| 82 |
-
st.
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
def show_results(label: str, y_pred):
|
| 93 |
-
with st.expander(label, expanded=(label == "Ensemble (Stacking)")):
|
| 94 |
hits = mlb.inverse_transform((y_pred >= THRESH).astype(int))[0]
|
| 95 |
st.markdown(f"**GO terms com prob β₯ {THRESH}**")
|
| 96 |
st.code("\n".join(hits) if hits else "β nenhum β")
|
| 97 |
-
|
| 98 |
st.markdown(f"**Top {TOP_N} GO terms mais provΓ‘veis**")
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
show_results("ESM-2 (MLP)", y_esm)
|
| 107 |
-
show_results("Ensemble (Stacking)", y_ens)
|
|
|
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
from keras.models import load_model
|
| 9 |
|
| 10 |
+
# βββββββββββββββββββ CONFIG βββββββββββββββββββ #
|
| 11 |
+
SPACE_ID = "melvinalves/protein_function_prediction"
|
| 12 |
+
TOP_N = 10
|
| 13 |
+
THRESH = 0.50
|
| 14 |
+
CHUNK_PB = 512
|
| 15 |
+
CHUNK_ESM = 1024
|
| 16 |
+
|
| 17 |
+
# βββββββββββββββββββ HELPERS βββββββββββββββββββ #
|
| 18 |
@st.cache_resource
|
| 19 |
+
def download_file(path):
|
| 20 |
+
return hf_hub_download(repo_id=SPACE_ID, repo_type="space", filename=path)
|
| 21 |
|
| 22 |
@st.cache_resource
|
| 23 |
+
def load_keras(name):
|
| 24 |
+
return load_model(download_file(f"models/{name}"), compile=False)
|
| 25 |
|
| 26 |
@st.cache_resource
|
| 27 |
+
def load_hf_encoder(model):
|
| 28 |
+
tok = AutoTokenizer.from_pretrained(model, do_lower_case=False)
|
| 29 |
+
mdl = AutoModel.from_pretrained(model)
|
| 30 |
mdl.eval()
|
| 31 |
return tok, mdl
|
| 32 |
|
| 33 |
+
def embed_seq(model, seq, chunk):
|
| 34 |
+
tok, mdl = load_hf_encoder(model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
parts = [seq[i:i+chunk] for i in range(0, len(seq), chunk)]
|
| 36 |
vecs = []
|
| 37 |
for p in parts:
|
|
|
|
| 40 |
vecs.append(out.last_hidden_state[:, 0, :].squeeze().numpy())
|
| 41 |
return np.mean(vecs, axis=0, keepdims=True)
|
| 42 |
|
| 43 |
+
# βββββββββββββββββββ CARGA MODELOS βββββββββββββββββββ #
|
| 44 |
+
mlp_pb = load_keras("mlp_protbert.h5")
|
| 45 |
+
mlp_bfd = load_keras("mlp_protbertbfd.h5")
|
| 46 |
+
mlp_esm = load_keras("mlp_esm2.h5")
|
| 47 |
+
stacking = load_keras("ensemble_stack.h5") # usa o nome real aqui
|
| 48 |
+
|
| 49 |
+
mlb = joblib.load(download_file("data/mlb_597.pkl"))
|
| 50 |
+
GO = mlb.classes_
|
| 51 |
+
|
| 52 |
# βββββββββββββββββββ UI βββββββββββββββββββ #
|
| 53 |
st.title("π¬ PrediΓ§Γ£o de FunΓ§Γ΅es de ProteΓnas")
|
| 54 |
|
|
|
|
| 59 |
unsafe_allow_html=True,
|
| 60 |
)
|
| 61 |
|
| 62 |
+
fasta_input = st.text_area("Insere a sequΓͺncia FASTA:", height=200)
|
| 63 |
+
predict_clicked = st.button("Prever GO terms")
|
| 64 |
|
| 65 |
+
if predict_clicked:
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
# βββ ValidaΓ§Γ£o mΓnima βββ
|
| 68 |
+
seq = "\n".join(l for l in fasta_input.splitlines() if not l.startswith(">")).replace(" ", "").upper()
|
| 69 |
if not seq:
|
| 70 |
+
st.warning("Por favor, insere primeiro uma sequΓͺncia FASTA vΓ‘lida.")
|
| 71 |
st.stop()
|
| 72 |
|
| 73 |
+
# βββ 1) EMBEDDINGS βββ
|
| 74 |
+
with st.spinner("β³ A gerar embeddingsβ¦"):
|
| 75 |
+
emb_pb = embed_seq("Rostlab/prot_bert", seq, CHUNK_PB)
|
| 76 |
+
emb_bfd = embed_seq("Rostlab/prot_bert_bfd", seq, CHUNK_PB)
|
| 77 |
+
emb_esm = embed_seq("facebook/esm2_t33_650M_UR50D", seq, CHUNK_ESM)
|
| 78 |
+
|
| 79 |
+
# βββ 2) PREDIΓΓES βββ
|
| 80 |
+
with st.spinner("π§ A fazer prediΓ§Γ΅esβ¦"):
|
| 81 |
+
y_pb = mlp_pb.predict(emb_pb)
|
| 82 |
+
y_bfd = mlp_bfd.predict(emb_bfd)
|
| 83 |
+
y_esm = mlp_esm.predict(emb_esm)[:, :597]
|
| 84 |
+
X = np.concatenate([y_pb, y_bfd, y_esm], axis=1)
|
| 85 |
+
y_ens = stacking.predict(X)
|
| 86 |
+
|
| 87 |
+
# βββ 3) MOSTRAR RESULTADOS βββ
|
| 88 |
+
def mostrar(tag, y_pred):
|
| 89 |
+
with st.expander(tag, expanded=(tag == "Ensemble (Stacking)")):
|
|
|
|
|
|
|
| 90 |
hits = mlb.inverse_transform((y_pred >= THRESH).astype(int))[0]
|
| 91 |
st.markdown(f"**GO terms com prob β₯ {THRESH}**")
|
| 92 |
st.code("\n".join(hits) if hits else "β nenhum β")
|
|
|
|
| 93 |
st.markdown(f"**Top {TOP_N} GO terms mais provΓ‘veis**")
|
| 94 |
+
for i in np.argsort(-y_pred[0])[:TOP_N]:
|
| 95 |
+
st.write(f"{GO[i]} : {y_pred[0][i]:.4f}")
|
| 96 |
+
|
| 97 |
+
mostrar("ProtBERT (MLP)", y_pb)
|
| 98 |
+
mostrar("ProtBERT-BFD (MLP)", y_bfd)
|
| 99 |
+
mostrar("ESM-2 (MLP)", y_esm)
|
| 100 |
+
mostrar("Ensemble (Stacking)", y_ens)
|
|
|
|
|
|