Update app.py
Browse files
app.py
CHANGED
|
@@ -1,100 +1,97 @@
|
|
| 1 |
import os
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
|
|
|
|
|
|
| 4 |
from transformers import AutoTokenizer, AutoModel
|
|
|
|
| 5 |
from tensorflow.keras.models import load_model
|
| 6 |
-
import joblib
|
| 7 |
-
import streamlit as st
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
|
| 11 |
-
MODELS_DIR =
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
CHUNK_ESM = 1024
|
| 18 |
|
| 19 |
-
#
|
| 20 |
@st.cache_resource
|
| 21 |
-
def
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
# ---------- Cache dos modelos locais ----------
|
| 28 |
@st.cache_resource
|
| 29 |
-
def
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
mlp_bfd = load_local_model(os.path.join(MODELS_DIR, "mlp_protbertbfd.keras"))
|
| 34 |
-
mlp_esm = load_local_model(os.path.join(MODELS_DIR, "mlp_esm2.keras"))
|
| 35 |
-
stacking = load_local_model(os.path.join(MODELS_DIR, "modelo_ensemble_stack.keras"))
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
go_terms = mlb.classes_
|
| 40 |
|
| 41 |
-
#
|
| 42 |
-
def embed_sequence(model_name, seq,
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
|
| 48 |
-
|
| 49 |
-
embeddings = []
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
|
|
|
|
| 65 |
|
| 66 |
-
#
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
if st.button("Prever GO terms"):
|
| 72 |
-
if not seq:
|
| 73 |
-
st.warning("Por favor, insere uma sequência válida.")
|
| 74 |
-
else:
|
| 75 |
-
st.write("🔄 A gerar embeddings...")
|
| 76 |
-
|
| 77 |
-
emb_pb = embed_sequence("Rostlab/prot_bert", seq, CHUNK_PB)
|
| 78 |
-
emb_bfd = embed_sequence("Rostlab/prot_bert_bfd", seq, CHUNK_PB)
|
| 79 |
-
emb_esm = embed_sequence("facebook/esm2_t33_650M_UR50D", seq, CHUNK_ESM)
|
| 80 |
-
|
| 81 |
-
st.write("🧠 A fazer predições com cada modelo...")
|
| 82 |
-
|
| 83 |
-
y_pb = mlp_pb.predict(emb_pb)
|
| 84 |
-
y_bfd = mlp_bfd.predict(emb_bfd)
|
| 85 |
-
y_esm = mlp_esm.predict(emb_esm)
|
| 86 |
-
|
| 87 |
-
X_stack = np.concatenate([y_pb, y_bfd, y_esm], axis=1)
|
| 88 |
-
y_pred = stacking.predict(X_stack)
|
| 89 |
-
|
| 90 |
-
st.subheader("GO terms com probabilidade ≥ 0.5:")
|
| 91 |
-
predicted = mlb.inverse_transform((y_pred >= 0.5).astype(int))[0]
|
| 92 |
-
if predicted:
|
| 93 |
-
st.code("\n".join(predicted))
|
| 94 |
-
else:
|
| 95 |
-
st.info("Nenhum GO term com probabilidade ≥ 0.5.")
|
| 96 |
-
|
| 97 |
-
st.subheader(f"Top {TOP_N} GO terms mais prováveis:")
|
| 98 |
-
top_idx = np.argsort(-y_pred[0])[:TOP_N]
|
| 99 |
-
for i in top_idx:
|
| 100 |
-
st.write(f"{go_terms[i]} : {y_pred[0][i]:.4f}")
|
|
|
|
| 1 |
import os
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import joblib
|
| 6 |
from transformers import AutoTokenizer, AutoModel
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
from tensorflow.keras.models import load_model
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# ----------- Config Space -----------
|
| 11 |
+
SPACE_REPO = "melvinalves/protein_function_prediction" # <- o teu Space
|
| 12 |
+
MODELS_DIR = "models"
|
| 13 |
+
DATA_DIR = "data"
|
| 14 |
|
| 15 |
+
TOP_N = 10
|
| 16 |
+
CHUNK_PB = 512
|
| 17 |
+
CHUNK_ESM = 1024
|
|
|
|
| 18 |
|
| 19 |
+
# ----------- Helpers -----------
|
| 20 |
@st.cache_resource
|
| 21 |
+
def hf_cached(path_inside_repo: str):
|
| 22 |
+
"""Faz download (uma vez) e devolve caminho local."""
|
| 23 |
+
return hf_hub_download(
|
| 24 |
+
repo_id=SPACE_REPO,
|
| 25 |
+
repo_type="space",
|
| 26 |
+
filename=path_inside_repo,
|
| 27 |
+
)
|
| 28 |
|
|
|
|
| 29 |
@st.cache_resource
|
| 30 |
+
def load_hf_model(model_name):
|
| 31 |
+
tok = AutoTokenizer.from_pretrained(model_name, do_lower_case=False)
|
| 32 |
+
mdl = AutoModel.from_pretrained(model_name); mdl.eval()
|
| 33 |
+
return tok, mdl
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
@st.cache_resource
|
| 36 |
+
def load_local_model(file_name):
|
| 37 |
+
local_path = hf_cached(f"{MODELS_DIR}/{file_name}")
|
| 38 |
+
return load_model(local_path, compile=False)
|
| 39 |
+
|
| 40 |
+
# ----------- Carregar modelos (.keras) -----------
|
| 41 |
+
mlp_pb = load_local_model("mlp_protbert.keras")
|
| 42 |
+
mlp_bfd = load_local_model("mlp_protbertbfd.keras")
|
| 43 |
+
mlp_esm = load_local_model("mlp_esm2.keras")
|
| 44 |
+
stacking = load_local_model("ensemble_stacking.keras")
|
| 45 |
+
|
| 46 |
+
# ----------- MultiLabelBinarizer -----------
|
| 47 |
+
mlb_path = hf_cached(f"{DATA_DIR}/mlb_597.pkl")
|
| 48 |
+
mlb = joblib.load(mlb_path)
|
| 49 |
go_terms = mlb.classes_
|
| 50 |
|
| 51 |
+
# ----------- Embedding por chunks -----------
|
| 52 |
+
def embed_sequence(model_name: str, seq: str, chunk: int) -> np.ndarray:
|
| 53 |
+
tok, mdl = load_hf_model(model_name)
|
| 54 |
+
fmt = lambda s: " ".join(list(s))
|
| 55 |
+
parts = [seq[i:i+chunk] for i in range(0, len(seq), chunk)]
|
| 56 |
+
vecs = []
|
| 57 |
+
for p in parts:
|
| 58 |
+
with torch.no_grad():
|
| 59 |
+
out = mdl(**tok(fmt(p), return_tensors="pt", truncation=True))
|
| 60 |
+
vecs.append(out.last_hidden_state[:, 0, :].squeeze().numpy())
|
| 61 |
+
return np.mean(vecs, axis=0, keepdims=True)
|
| 62 |
|
| 63 |
+
# ----------- UI -----------
|
| 64 |
+
st.title("Predição de Funções de Proteínas 🔬")
|
| 65 |
|
| 66 |
+
fa_input = st.text_area("Insere a sequência FASTA:", height=200)
|
|
|
|
| 67 |
|
| 68 |
+
if fa_input and st.button("Prever GO terms"):
|
| 69 |
+
# Limpa FASTA
|
| 70 |
+
seq = "\n".join(l for l in fa_input.splitlines() if not l.startswith(">"))
|
| 71 |
+
seq = seq.replace(" ", "").replace("\n", "").upper()
|
| 72 |
+
if not seq:
|
| 73 |
+
st.warning("Sequência vazia.")
|
| 74 |
+
st.stop()
|
| 75 |
|
| 76 |
+
st.write("🔄 A gerar embeddings…")
|
| 77 |
+
emb_pb = embed_sequence("Rostlab/prot_bert", seq, CHUNK_PB)
|
| 78 |
+
emb_bfd = embed_sequence("Rostlab/prot_bert_bfd", seq, CHUNK_PB)
|
| 79 |
+
emb_esm = embed_sequence("facebook/esm2_t33_650M_UR50D", seq, CHUNK_ESM)
|
| 80 |
|
| 81 |
+
st.write("🧠 A fazer predições…")
|
| 82 |
+
y_pb = mlp_pb.predict(emb_pb)
|
| 83 |
+
y_bfd = mlp_bfd.predict(emb_bfd)
|
| 84 |
+
y_esm = mlp_esm.predict(emb_esm)[:, :597] # garante 597 colunas
|
| 85 |
|
| 86 |
+
X_stack = np.concatenate([y_pb, y_bfd, y_esm], axis=1)
|
| 87 |
+
y_pred = stacking.predict(X_stack)
|
| 88 |
|
| 89 |
+
# ----------- Output -----------
|
| 90 |
+
st.subheader("GO terms com probabilidade ≥ 0.5")
|
| 91 |
+
hits = mlb.inverse_transform((y_pred >= 0.5).astype(int))[0]
|
| 92 |
+
st.code("\n".join(hits) or "— nenhum —")
|
| 93 |
+
|
| 94 |
+
st.subheader(f"Top {TOP_N} GO terms mais prováveis")
|
| 95 |
+
for idx in np.argsort(-y_pred[0])[:TOP_N]:
|
| 96 |
+
st.write(f"{go_terms[idx]} : {y_pred[0][idx]:.4f}")
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|