File size: 32,816 Bytes
db4c2cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "c6dbc330-062a-48f0-8242-3f21cc1c9c2b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "go.obo: fmt(1.2) rel(2025-03-16) 43,544 Terms\n",
      "✓ Ficheiros criados:\n",
      " - data/mf-training.csv : (31142, 3)\n",
      " - data/mf-validation.csv: (1724, 3)\n",
      " - data/mf-test.csv     : (1724, 3)\n",
      "GO terms únicos (após propagação e filtro): 602\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "from Bio import SeqIO\n",
    "from collections import Counter\n",
    "from goatools.obo_parser import GODag\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.preprocessing import MultiLabelBinarizer\n",
    "from iterstrat.ml_stratifiers import MultilabelStratifiedKFold\n",
    "import numpy as np\n",
    "import os\n",
    "\n",
    "# Carregar GO anotações\n",
    "annotations = pd.read_csv(\"uniprot_sprot_exp.txt\", sep=\"\\t\", names=[\"protein_id\", \"go_term\", \"go_category\"])\n",
    "annotations_f = annotations[annotations[\"go_category\"] == \"F\"]\n",
    "\n",
    "# Carregar DAG e propagar GO terms\n",
    "# propagação hierárquica\n",
    "# https://geneontology.org/docs/download-ontology/\n",
    "go_dag = GODag(\"go.obo\")\n",
    "mf_terms = {t for t, o in go_dag.items() if o.namespace == \"molecular_function\"}\n",
    "\n",
    "def propagate_terms(term_list):\n",
    "    full = set()\n",
    "    for t in term_list:\n",
    "        if t not in go_dag:\n",
    "            continue\n",
    "        full.add(t)\n",
    "        full.update(go_dag[t].get_all_parents())\n",
    "    return list(full & mf_terms)\n",
    "\n",
    "# Carregar sequências\n",
    "seqs, ids = [], []\n",
    "for record in SeqIO.parse(\"uniprot_sprot_exp.fasta\", \"fasta\"):\n",
    "    ids.append(record.id)\n",
    "    seqs.append(str(record.seq))\n",
    "\n",
    "seq_df = pd.DataFrame({\"protein_id\": ids, \"sequence\": seqs})\n",
    "\n",
    "# Juntar com GO anotado e propagar\n",
    "grouped = annotations_f.groupby(\"protein_id\")[\"go_term\"].apply(list).reset_index()\n",
    "data = seq_df.merge(grouped, on=\"protein_id\")\n",
    "data = data[data[\"go_term\"].apply(len) > 0]\n",
    "data[\"go_term\"] = data[\"go_term\"].apply(propagate_terms)\n",
    "data = data[data[\"go_term\"].apply(len) > 0]\n",
    "\n",
    "# Filtrar GO terms raros\n",
    "# todos os terms com menos de 50 proteinas associadas\n",
    "all_terms = [term for sublist in data[\"go_term\"] for term in sublist]\n",
    "term_counts = Counter(all_terms)\n",
    "valid_terms = {term for term, count in term_counts.items() if count >= 50}\n",
    "data[\"go_term\"] = data[\"go_term\"].apply(lambda terms: [t for t in terms if t in valid_terms])\n",
    "data = data[data[\"go_term\"].apply(len) > 0]\n",
    "\n",
    "# Preparar dataset final\n",
    "data[\"go_terms\"] = data[\"go_term\"].apply(lambda x: ';'.join(sorted(set(x))))\n",
    "data = data[[\"protein_id\", \"sequence\", \"go_terms\"]].drop_duplicates()\n",
    "\n",
    "# Binarizar labels e dividir\n",
    "mlb = MultiLabelBinarizer()\n",
    "Y = mlb.fit_transform(data[\"go_terms\"].str.split(\";\"))\n",
    "X = data[[\"protein_id\", \"sequence\"]].values\n",
    "\n",
    "mskf = MultilabelStratifiedKFold(n_splits=10, random_state=42, shuffle=True)\n",
    "train_idx, temp_idx = next(mskf.split(X, Y))\n",
    "val_idx, test_idx = np.array_split(temp_idx, 2)\n",
    "\n",
    "df_train = data.iloc[train_idx].copy()\n",
    "df_val   = data.iloc[val_idx].copy()\n",
    "df_test  = data.iloc[test_idx].copy()\n",
    "\n",
    "# Guardar em CSV\n",
    "os.makedirs(\"data\", exist_ok=True)\n",
    "df_train.to_csv(\"data/mf-training.csv\", index=False)\n",
    "df_val.to_csv(\"data/mf-validation.csv\", index=False)\n",
    "df_test.to_csv(\"data/mf-test.csv\", index=False)\n",
    "\n",
    "# Confirmar\n",
    "print(\"✓ Ficheiros criados:\")\n",
    "print(\" - data/mf-training.csv :\", df_train.shape)\n",
    "print(\" - data/mf-validation.csv:\", df_val.shape)\n",
    "print(\" - data/mf-test.csv     :\", df_test.shape)\n",
    "print(f\"GO terms únicos (após propagação e filtro): {len(mlb.classes_)}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "6cf7aaa6-4941-4951-8d73-1f4f1f4362f3",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\Melvin\\anaconda3\\envs\\projeto_proteina2\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n",
      "C:\\Users\\Melvin\\anaconda3\\envs\\projeto_proteina2\\lib\\site-packages\\transformers\\utils\\generic.py:441: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.\n",
      "  _torch_pytree._register_pytree_node(\n",
      "100%|██████████| 31142/31142 [00:26<00:00, 1192.86it/s]\n",
      "100%|██████████| 1724/1724 [00:00<00:00, 2570.68it/s]\n",
      "C:\\Users\\Melvin\\anaconda3\\envs\\projeto_proteina2\\lib\\site-packages\\ktrain\\text\\preprocessor.py:382: UserWarning: The class_names argument is replacing the classes argument. Please update your code.\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "preprocessing train...\n",
      "language: en\n",
      "train sequence lengths:\n",
      "\tmean : 423\n",
      "\t95percentile : 604\n",
      "\t99percentile : 715\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "<style>\n",
       "    /* Turns off some styling */\n",
       "    progress {\n",
       "        /* gets rid of default border in Firefox and Opera. */\n",
       "        border: none;\n",
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
       "        background-size: auto;\n",
       "    }\n",
       "    progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
       "        background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
       "    }\n",
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
       "        background: #F44336;\n",
       "    }\n",
       "</style>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Is Multi-Label? True\n",
      "preprocessing test...\n",
      "language: en\n",
      "test sequence lengths:\n",
      "\tmean : 408\n",
      "\t95percentile : 603\n",
      "\t99percentile : 714\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "<style>\n",
       "    /* Turns off some styling */\n",
       "    progress {\n",
       "        /* gets rid of default border in Firefox and Opera. */\n",
       "        border: none;\n",
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
       "        background-size: auto;\n",
       "    }\n",
       "    progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
       "        background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
       "    }\n",
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
       "        background: #F44336;\n",
       "    }\n",
       "</style>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "begin training using triangular learning rate policy with max lr of 1e-05...\n",
      "Epoch 1/10\n",
      "40995/40995 [==============================] - 9020s 219ms/step - loss: 0.0740 - binary_accuracy: 0.9869 - val_loss: 0.0526 - val_binary_accuracy: 0.9866\n",
      "Epoch 2/10\n",
      "40995/40995 [==============================] - 8939s 218ms/step - loss: 0.0464 - binary_accuracy: 0.9877 - val_loss: 0.0457 - val_binary_accuracy: 0.9871\n",
      "Epoch 3/10\n",
      "40995/40995 [==============================] - 8881s 217ms/step - loss: 0.0413 - binary_accuracy: 0.9883 - val_loss: 0.0418 - val_binary_accuracy: 0.9877\n",
      "Epoch 4/10\n",
      "40995/40995 [==============================] - 10277s 251ms/step - loss: 0.0380 - binary_accuracy: 0.9888 - val_loss: 0.0396 - val_binary_accuracy: 0.9881\n",
      "Epoch 5/10\n",
      "40995/40995 [==============================] - 10565s 258ms/step - loss: 0.0357 - binary_accuracy: 0.9892 - val_loss: 0.0380 - val_binary_accuracy: 0.9883\n",
      "Epoch 6/10\n",
      "40995/40995 [==============================] - 10693s 261ms/step - loss: 0.0338 - binary_accuracy: 0.9895 - val_loss: 0.0369 - val_binary_accuracy: 0.9885\n",
      "Epoch 7/10\n",
      "40995/40995 [==============================] - 12055s 294ms/step - loss: 0.0323 - binary_accuracy: 0.9898 - val_loss: 0.0360 - val_binary_accuracy: 0.9888\n",
      "Epoch 8/10\n",
      "40995/40995 [==============================] - 10225s 249ms/step - loss: 0.0309 - binary_accuracy: 0.9901 - val_loss: 0.0353 - val_binary_accuracy: 0.9890\n",
      "Epoch 9/10\n",
      "40995/40995 [==============================] - 10308s 251ms/step - loss: 0.0297 - binary_accuracy: 0.9904 - val_loss: 0.0347 - val_binary_accuracy: 0.9891\n",
      "Epoch 10/10\n",
      "40995/40995 [==============================] - 10275s 251ms/step - loss: 0.0286 - binary_accuracy: 0.9907 - val_loss: 0.0346 - val_binary_accuracy: 0.9893\n",
      "Weights from best epoch have been loaded into model.\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<keras.callbacks.History at 0x2b644b84fd0>"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "from tqdm import tqdm\n",
    "import random\n",
    "import os\n",
    "import ktrain\n",
    "from ktrain import text\n",
    "from sklearn.preprocessing import MultiLabelBinarizer\n",
    "\n",
    "\n",
    "# PAM1\n",
    "# PAM matrix model of protein evolution\n",
    "# DOI:10.1093/oxfordjournals.molbev.a040360\n",
    "pam_data = {\n",
    "    'A': [9948, 19, 27, 42, 31, 46, 50, 92, 17, 7, 40, 88, 42, 41, 122, 279, 255, 9, 72, 723],\n",
    "    'R': [14, 9871, 24, 38, 37, 130, 38, 62, 49, 4, 58, 205, 26, 33, 47, 103, 104, 5, 36, 52],\n",
    "    'N': [20, 22, 9860, 181, 29, 36, 41, 67, 31, 5, 22, 49, 23, 10, 33, 83, 66, 3, 43, 32],\n",
    "    'D': [40, 34, 187, 9818, 11, 63, 98, 61, 23, 5, 25, 54, 43, 13, 27, 88, 55, 4, 29, 36],\n",
    "    'C': [20, 16, 26, 9, 9987, 10, 17, 37, 12, 2, 16, 26, 10, 19, 27, 26, 25, 2, 6, 67],\n",
    "    'Q': [29, 118, 29, 49, 8, 9816, 72, 55, 36, 4, 60, 158, 35, 22, 39, 86, 74, 3, 34, 28],\n",
    "    'E': [35, 29, 41, 101, 12, 71, 9804, 56, 33, 5, 36, 107, 42, 20, 38, 87, 69, 4, 30, 42],\n",
    "    'G': [96, 61, 77, 70, 38, 51, 58, 9868, 26, 6, 37, 53, 39, 28, 69, 134, 116, 5, 47, 60],\n",
    "    'H': [17, 53, 33, 19, 15, 39, 34, 24, 9907, 3, 32, 57, 24, 15, 27, 47, 43, 2, 22, 19],\n",
    "    'I': [6, 3, 6, 6, 3, 5, 6, 7, 3, 9973, 23, 13, 12, 41, 93, 84, 115, 3, 8, 102],\n",
    "    'L': [26, 39, 17, 15, 7, 33, 22, 20, 19, 27, 9864, 49, 24, 78, 117, 148, 193, 5, 24, 70],\n",
    "    'K': [60, 198, 43, 52, 12, 142, 96, 53, 42, 10, 63, 9710, 33, 26, 54, 109, 102, 5, 43, 42],\n",
    "    'M': [21, 22, 15, 18, 6, 20, 18, 18, 17, 11, 27, 32, 9945, 26, 34, 61, 71, 3, 12, 31],\n",
    "    'F': [18, 17, 8, 6, 8, 11, 10, 16, 10, 44, 92, 24, 29, 9899, 89, 88, 142, 7, 14, 68],\n",
    "    'P': [97, 47, 35, 29, 23, 35, 38, 57, 21, 24, 47, 56, 28, 76, 9785, 115, 77, 4, 24, 35],\n",
    "    'S': [241, 87, 76, 73, 17, 56, 60, 99, 32, 13, 69, 92, 42, 67, 100, 9605, 212, 8, 63, 70],\n",
    "    'T': [186, 78, 54, 37, 14, 42, 42, 83, 28, 23, 84, 85, 53, 93, 66, 182, 9676, 8, 39, 90],\n",
    "    'W': [2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 5, 3, 4, 4, 9960, 3, 4],\n",
    "    'Y': [29, 21, 17, 9, 4, 13, 9, 21, 10, 7, 20, 17, 11, 23, 19, 41, 31, 3, 9935, 23],\n",
    "    'V': [368, 27, 18, 18, 50, 23, 34, 64, 15, 85, 72, 42, 33, 88, 42, 112, 137, 4, 20, 9514]\n",
    "}\n",
    "pam_raw = pd.DataFrame(pam_data, index=list(pam_data.keys()))\n",
    "pam_matrix = pam_raw.div(pam_raw.sum(axis=1), axis=0)\n",
    "list_amino = pam_raw.columns.tolist()\n",
    "pam_dict = {\n",
    "    aa: {sub: pam_matrix.loc[aa, sub] for sub in list_amino}\n",
    "    for aa in list_amino\n",
    "}\n",
    "\n",
    "def pam1_substitution(aa):\n",
    "    if aa not in pam_dict:\n",
    "        return aa\n",
    "    subs = list(pam_dict[aa].keys())\n",
    "    probs = list(pam_dict[aa].values())\n",
    "    return np.random.choice(subs, p=probs)\n",
    "\n",
    "def augment_sequence(seq, sub_prob=0.05):\n",
    "    return ''.join([pam1_substitution(aa) if random.random() < sub_prob else aa for aa in seq])\n",
    "\n",
    "def slice_sequence(seq, win=512):\n",
    "    return [seq[i:i+win] for i in range(0, len(seq), win)]\n",
    "\n",
    "def generate_data(df, augment=False):\n",
    "    X, y = [], []\n",
    "    label_cols = [col for col in df.columns if col.startswith(\"GO:\")]\n",
    "    for _, row in tqdm(df.iterrows(), total=len(df)):\n",
    "        seq = row[\"sequence\"]\n",
    "        if augment:\n",
    "            seq = augment_sequence(seq)\n",
    "        seq_slices = slice_sequence(seq)\n",
    "        X.extend(seq_slices)\n",
    "        lbl = row[label_cols].values.astype(int)\n",
    "        y.extend([lbl] * len(seq_slices))\n",
    "    return X, np.array(y), label_cols\n",
    "\n",
    "def format_sequence(seq): return \" \".join(list(seq))\n",
    "\n",
    "# Função para carregar e binarizar\n",
    "def load_and_binarize(csv_path, mlb=None):\n",
    "    df = pd.read_csv(csv_path)\n",
    "    df[\"go_terms\"] = df[\"go_terms\"].str.split(\";\")\n",
    "    if mlb is None:\n",
    "        mlb = MultiLabelBinarizer()\n",
    "        labels = mlb.fit_transform(df[\"go_terms\"])\n",
    "    else:\n",
    "        labels = mlb.transform(df[\"go_terms\"])\n",
    "    labels_df = pd.DataFrame(labels, columns=mlb.classes_)\n",
    "    df = df.reset_index(drop=True).join(labels_df)\n",
    "    return df, mlb\n",
    "\n",
    "# Carregar os dados\n",
    "df_train, mlb = load_and_binarize(\"data/mf-training.csv\")\n",
    "df_val, _     = load_and_binarize(\"data/mf-validation.csv\", mlb=mlb)\n",
    "\n",
    "# Gerar com augmentation no treino\n",
    "X_train, y_train, term_cols = generate_data(df_train, augment=True)\n",
    "X_val,   y_val, _           = generate_data(df_val,   augment=False)\n",
    "\n",
    "# Preparar texto para tokenizer\n",
    "X_train_fmt = list(map(format_sequence, X_train))\n",
    "X_val_fmt   = list(map(format_sequence, X_val))\n",
    "\n",
    "# Fine-tune ProtBERT-BFD\n",
    "# https://huggingface.co/Rostlab/prot_bert_bfd\n",
    "# https://doi.org/10.1093/bioinformatics/btac020\n",
    "# Dados de treino -> BFD (Big Fantastic Database) (2.1 bilhões de sequências)\n",
    "MODEL_NAME = \"Rostlab/prot_bert_bfd\"\n",
    "MAX_LEN = 512\n",
    "BATCH_SIZE = 1\n",
    "\n",
    "t = text.Transformer(MODEL_NAME, maxlen=MAX_LEN, classes=term_cols)\n",
    "trn = t.preprocess_train(X_train_fmt, y_train)\n",
    "val = t.preprocess_test(X_val_fmt, y_val)\n",
    "\n",
    "model   = t.get_classifier()\n",
    "learner = ktrain.get_learner(model,\n",
    "                             train_data=trn,\n",
    "                             val_data=val,\n",
    "                             batch_size=BATCH_SIZE)\n",
    "\n",
    "learner.autofit(lr=1e-5,\n",
    "                epochs=10,\n",
    "                early_stopping=1,\n",
    "                checkpoint_folder=\"mf-fine-tuned-protbertbfd\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "9b39c439-5708-4787-bfee-d3a4d3aa190d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "✓ Tokenizer base e modelo fine-tuned carregados com sucesso\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Processando data/mf-training.csv: 100%|██████████| 31142/31142 [5:17:56<00:00,  1.63it/s]  \n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "✓ Guardado embeddings\\train_protbertbfd.pkl — 31142 proteínas\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Processando data/mf-validation.csv: 100%|██████████| 1724/1724 [19:15<00:00,  1.49it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "✓ Guardado embeddings\\val_protbertbfd.pkl — 1724 proteínas\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Processando data/mf-test.csv: 100%|██████████| 1724/1724 [17:15<00:00,  1.66it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "✓ Guardado embeddings\\test_protbertbfd.pkl — 1724 proteínas\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "from tqdm import tqdm\n",
    "import joblib\n",
    "import gc\n",
    "from transformers import AutoTokenizer, TFAutoModel\n",
    "\n",
    "# Parâmetros\n",
    "MODEL_DIR = \"weights/mf-fine-tuned-protbertbfd\"\n",
    "MODEL_NAME = \"Rostlab/prot_bert_bfd\"\n",
    "OUT_DIR   = \"embeddings\"\n",
    "BATCH_TOK = 16\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, do_lower_case=False)\n",
    "model     = TFAutoModel.from_pretrained(MODEL_DIR, from_pt=False)\n",
    "\n",
    "print(\"✓ Tokenizer base e modelo fine-tuned carregados com sucesso\")\n",
    "\n",
    "# Funções auxiliares\n",
    "\n",
    "def get_embeddings(batch, tokenizer, model):\n",
    "    tokens = tokenizer(batch, return_tensors=\"tf\", padding=True, truncation=True, max_length=512)\n",
    "    output = model(**tokens)\n",
    "    return output.last_hidden_state[:, 0, :].numpy()\n",
    "\n",
    "def process_split(csv_path, out_path):\n",
    "    df = pd.read_csv(csv_path)\n",
    "    label_cols = [col for col in df.columns if col.startswith(\"GO:\")]\n",
    "    prot_ids, embeds, labels = [], [], []\n",
    "\n",
    "    for _, row in tqdm(df.iterrows(), total=len(df), desc=f\"Processando {csv_path}\"):\n",
    "        slices     = slice_sequence(row[\"sequence\"])\n",
    "        slices_fmt = list(map(format_sequence, slices))\n",
    "\n",
    "        slice_embeds = []\n",
    "        for i in range(0, len(slices_fmt), BATCH_TOK):\n",
    "            batch = slices_fmt[i:i+BATCH_TOK]\n",
    "            slice_embeds.append(get_embeddings(batch, tokenizer, model))\n",
    "        slice_embeds = np.vstack(slice_embeds)\n",
    "\n",
    "        prot_embed = slice_embeds.mean(axis=0)\n",
    "        prot_ids.append(row[\"protein_id\"])\n",
    "        embeds.append(prot_embed.astype(np.float32))\n",
    "        labels.append(row[label_cols].values.astype(np.int8))\n",
    "        gc.collect()\n",
    "\n",
    "    embeds = np.vstack(embeds)\n",
    "    labels = np.vstack(labels)\n",
    "\n",
    "    joblib.dump({\n",
    "        \"protein_ids\": prot_ids,\n",
    "        \"embeddings\": embeds,\n",
    "        \"labels\": labels,\n",
    "        \"go_terms\": label_cols\n",
    "    }, out_path, compress=3)\n",
    "\n",
    "    print(f\"✓ Guardado {out_path} — {embeds.shape[0]} proteínas\")\n",
    "\n",
    "# Aplicar\n",
    "os.makedirs(OUT_DIR, exist_ok=True)\n",
    "\n",
    "process_split(\"data/mf-training.csv\",   os.path.join(OUT_DIR, \"train_protbertbfd.pkl\"))\n",
    "process_split(\"data/mf-validation.csv\", os.path.join(OUT_DIR, \"val_protbertbfd.pkl\"))\n",
    "process_split(\"data/mf-test.csv\",       os.path.join(OUT_DIR, \"test_protbertbfd.pkl\"))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "ad0c5421-e0a1-4a6a-8ace-2c69aeab0e0d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "✓ Corrigido: embeddings/train_protbertbfd.pkl — 31142 exemplos, 597 GO terms\n",
      "✓ Corrigido: embeddings/val_protbertbfd.pkl — 1724 exemplos, 597 GO terms\n",
      "✓ Corrigido: embeddings/test_protbertbfd.pkl — 1724 exemplos, 597 GO terms\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import joblib\n",
    "from sklearn.preprocessing import MultiLabelBinarizer\n",
    "\n",
    "# Obter GO terms do ficheiro de teste\n",
    "df_test = pd.read_csv(\"data/mf-test.csv\")\n",
    "test_terms = sorted(set(term for row in df_test[\"go_terms\"].str.split(\";\") for term in row))\n",
    "\n",
    "# Função para corrigir um .pkl com base nos GO terms do teste\n",
    "def patch_to_common_terms(csv_path, pkl_path, common_terms):\n",
    "    df = pd.read_csv(csv_path)\n",
    "    terms_split = df[\"go_terms\"].str.split(\";\")\n",
    "    \n",
    "    # Apenas termos presentes nos common_terms\n",
    "    terms_filtered = terms_split.apply(lambda lst: [t for t in lst if t in common_terms])\n",
    "    \n",
    "    mlb = MultiLabelBinarizer(classes=common_terms)\n",
    "    Y = mlb.fit_transform(terms_filtered)\n",
    "\n",
    "    data = joblib.load(pkl_path)\n",
    "    data[\"labels\"] = Y\n",
    "    data[\"go_terms\"] = mlb.classes_.tolist()\n",
    "    \n",
    "    joblib.dump(data, pkl_path, compress=3)\n",
    "    print(f\"✓ Corrigido: {pkl_path} — {Y.shape[0]} exemplos, {Y.shape[1]} GO terms\")\n",
    "\n",
    "# Aplicar às 3 partições\n",
    "patch_to_common_terms(\"data/mf-training.csv\",   \"embeddings/train_protbertbfd.pkl\", test_terms)\n",
    "patch_to_common_terms(\"data/mf-validation.csv\", \"embeddings/val_protbertbfd.pkl\",   test_terms)\n",
    "patch_to_common_terms(\"data/mf-test.csv\",       \"embeddings/test_protbertbfd.pkl\",  test_terms)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "1785d8a9-23fc-4490-8d71-29cc91a4cb57",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "✓ Embeddings carregados: (31142, 1024) → 597 GO terms\n",
      "Epoch 1/100\n",
      "974/974 [==============================] - 12s 11ms/step - loss: 0.0339 - binary_accuracy: 0.9900 - val_loss: 0.0327 - val_binary_accuracy: 0.9905\n",
      "Epoch 2/100\n",
      "974/974 [==============================] - 11s 11ms/step - loss: 0.0253 - binary_accuracy: 0.9922 - val_loss: 0.0323 - val_binary_accuracy: 0.9906\n",
      "Epoch 3/100\n",
      "974/974 [==============================] - 11s 11ms/step - loss: 0.0244 - binary_accuracy: 0.9923 - val_loss: 0.0326 - val_binary_accuracy: 0.9906\n",
      "Epoch 4/100\n",
      "974/974 [==============================] - 11s 11ms/step - loss: 0.0239 - binary_accuracy: 0.9925 - val_loss: 0.0328 - val_binary_accuracy: 0.9906\n",
      "Epoch 5/100\n",
      "974/974 [==============================] - 11s 11ms/step - loss: 0.0236 - binary_accuracy: 0.9925 - val_loss: 0.0321 - val_binary_accuracy: 0.9906\n",
      "Epoch 6/100\n",
      "974/974 [==============================] - 11s 11ms/step - loss: 0.0233 - binary_accuracy: 0.9926 - val_loss: 0.0328 - val_binary_accuracy: 0.9907\n",
      "Epoch 7/100\n",
      "974/974 [==============================] - 11s 11ms/step - loss: 0.0232 - binary_accuracy: 0.9926 - val_loss: 0.0330 - val_binary_accuracy: 0.9908\n",
      "Epoch 8/100\n",
      "974/974 [==============================] - 11s 12ms/step - loss: 0.0229 - binary_accuracy: 0.9927 - val_loss: 0.0325 - val_binary_accuracy: 0.9907\n",
      "Epoch 9/100\n",
      "974/974 [==============================] - 12s 12ms/step - loss: 0.0226 - binary_accuracy: 0.9927 - val_loss: 0.0327 - val_binary_accuracy: 0.9906\n",
      "Epoch 10/100\n",
      "974/974 [==============================] - 12s 12ms/step - loss: 0.0226 - binary_accuracy: 0.9927 - val_loss: 0.0327 - val_binary_accuracy: 0.9907\n",
      "54/54 [==============================] - 0s 2ms/step\n",
      "Previsões guardadas em mf-protbertbfd-pam1.npy\n",
      "Modelo guardado em models/\n"
     ]
    }
   ],
   "source": [
    "import tensorflow as tf\n",
    "import joblib\n",
    "import numpy as np\n",
    "from tensorflow.keras import Input\n",
    "from tensorflow.keras.models import Sequential\n",
    "from tensorflow.keras.layers import Dense, Dropout\n",
    "from tensorflow.keras.callbacks import EarlyStopping\n",
    "\n",
    "# Carregar embeddings\n",
    "train = joblib.load(\"embeddings/train_protbertbfd.pkl\")\n",
    "val   = joblib.load(\"embeddings/val_protbertbfd.pkl\")\n",
    "test  = joblib.load(\"embeddings/test_protbertbfd.pkl\")\n",
    "\n",
    "X_train, y_train = train[\"embeddings\"], train[\"labels\"]\n",
    "X_val,   y_val   = val[\"embeddings\"],   val[\"labels\"]\n",
    "X_test,  y_test  = test[\"embeddings\"],  test[\"labels\"]\n",
    "\n",
    "print(f\"✓ Embeddings carregados: {X_train.shape} → {y_train.shape[1]} GO terms\")\n",
    "\n",
    "# Garantir consistência de classes\n",
    "max_classes = y_train.shape[1]  # 602 GO terms (do treino)\n",
    "\n",
    "def pad_labels(y, target_dim=max_classes):\n",
    "    if y.shape[1] < target_dim:\n",
    "        padding = np.zeros((y.shape[0], target_dim - y.shape[1]), dtype=np.int8)\n",
    "        return np.hstack([y, padding])\n",
    "    return y\n",
    "\n",
    "y_val  = pad_labels(y_val)\n",
    "y_test = pad_labels(y_test)\n",
    "\n",
    "# Modelo MLP\n",
    "model = Sequential([\n",
    "    Dense(1024, activation=\"relu\", input_shape=(X_train.shape[1],)),\n",
    "    Dropout(0.3),\n",
    "    Dense(512, activation=\"relu\"),\n",
    "    Dropout(0.3),\n",
    "    Dense(max_classes, activation=\"sigmoid\")\n",
    "])\n",
    "\n",
    "model.compile(loss=\"binary_crossentropy\",\n",
    "              optimizer=\"adam\",\n",
    "              metrics=[\"binary_accuracy\"])\n",
    "\n",
    "# Early stopping e treino\n",
    "callbacks = [\n",
    "    EarlyStopping(monitor=\"val_loss\", patience=5, restore_best_weights=True)\n",
    "]\n",
    "\n",
    "model.fit(X_train, y_train,\n",
    "          validation_data=(X_val, y_val),\n",
    "          epochs=100,\n",
    "          batch_size=32,\n",
    "          callbacks=callbacks,\n",
    "          verbose=1)\n",
    "\n",
    "# Previsões\n",
    "y_prob = model.predict(X_test)\n",
    "np.save(\"predictions/mf-protbertbfd-pam1.npy\", y_prob)\n",
    "print(\"Previsões guardadas em mf-protbertbfd-pam1.npy\")\n",
    "\n",
    "# Modelo\n",
    "model.save(\"models/mlp_protbertbfd.h5\")\n",
    "model.save(\"models/mlp_protbertbfd.keras\")\n",
    "print(\"Modelo guardado em models/\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "fdb66630-76dc-43a0-bd56-45052175fdba",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "go.obo: fmt(1.2) rel(2025-03-16) 43,544 Terms\n",
      "✓ Embeddings: (1724, 597) labels × 597 GO terms\n",
      "\n",
      "📊 Resultados finais (ProtBERTBFD + PAM1 + propagação):\n",
      "Fmax  = 0.6588\n",
      "Thr.  = 0.46\n",
      "AuPRC = 0.6991\n",
      "Smin  = 13.5461\n"
     ]
    }
   ],
   "source": [
    "import numpy as np\n",
    "from sklearn.metrics import precision_recall_curve, auc\n",
    "from goatools.obo_parser import GODag\n",
    "import joblib\n",
    "import math\n",
    "\n",
    "# Parâmetros\n",
    "GO_FILE = \"go.obo\"\n",
    "THRESHOLDS = np.arange(0.0, 1.01, 0.01)\n",
    "ALPHA = 0.5\n",
    "\n",
    "# Carregar dados\n",
    "test = joblib.load(\"embeddings/test_protbertbfd.pkl\")\n",
    "y_true = test[\"labels\"]\n",
    "terms  = test[\"go_terms\"]\n",
    "y_prob = np.load(\"predictions/mf-protbertbfd-pam1.npy\")\n",
    "go_dag = GODag(GO_FILE)\n",
    "\n",
    "print(f\"✓ Embeddings: {y_true.shape} labels × {len(terms)} GO terms\")\n",
    "\n",
    "# Fmax\n",
    "def compute_fmax(y_true, y_prob, thresholds):\n",
    "    fmax, best_thr = 0, 0\n",
    "    for t in thresholds:\n",
    "        y_pred = (y_prob >= t).astype(int)\n",
    "        tp = (y_true * y_pred).sum(axis=1)\n",
    "        fp = ((1 - y_true) * y_pred).sum(axis=1)\n",
    "        fn = (y_true * (1 - y_pred)).sum(axis=1)\n",
    "        precision = tp / (tp + fp + 1e-8)\n",
    "        recall    = tp / (tp + fn + 1e-8)\n",
    "        f1 = 2 * precision * recall / (precision + recall + 1e-8)\n",
    "        avg_f1 = np.mean(f1)\n",
    "        if avg_f1 > fmax:\n",
    "            fmax, best_thr = avg_f1, t\n",
    "    return fmax, best_thr\n",
    "\n",
    "# AuPRC micro\n",
    "def compute_auprc(y_true, y_prob):\n",
    "    precision, recall, _ = precision_recall_curve(y_true.ravel(), y_prob.ravel())\n",
    "    return auc(recall, precision)\n",
    "\n",
    "# Smin\n",
    "def compute_smin(y_true, y_prob, terms, threshold, go_dag, alpha=ALPHA):\n",
    "    y_pred = (y_prob >= threshold).astype(int)\n",
    "    ic = {}\n",
    "    total = (y_true + y_pred).sum(axis=0).sum()\n",
    "    for i, term in enumerate(terms):\n",
    "        freq = (y_true[:, i] + y_pred[:, i]).sum()\n",
    "        ic[term] = -np.log((freq + 1e-8) / total)\n",
    "\n",
    "    s_values = []\n",
    "    for true_vec, pred_vec in zip(y_true, y_pred):\n",
    "        true_terms = {terms[i] for i in np.where(true_vec)[0]}\n",
    "        pred_terms = {terms[i] for i in np.where(pred_vec)[0]}\n",
    "\n",
    "        anc_true = set()\n",
    "        for t in true_terms:\n",
    "            if t in go_dag:\n",
    "                anc_true |= go_dag[t].get_all_parents()\n",
    "        anc_pred = set()\n",
    "        for t in pred_terms:\n",
    "            if t in go_dag:\n",
    "                anc_pred |= go_dag[t].get_all_parents()\n",
    "\n",
    "        ru = pred_terms - true_terms\n",
    "        mi = true_terms - pred_terms\n",
    "        dist_ru = sum(ic.get(t, 0) for t in ru)\n",
    "        dist_mi = sum(ic.get(t, 0) for t in mi)\n",
    "        s = math.sqrt((alpha * dist_ru)**2 + ((1 - alpha) * dist_mi)**2)\n",
    "        s_values.append(s)\n",
    "\n",
    "    return np.mean(s_values)\n",
    "\n",
    "# Avaliar\n",
    "fmax, thr = compute_fmax(y_true, y_prob, THRESHOLDS)\n",
    "auprc = compute_auprc(y_true, y_prob)\n",
    "smin  = compute_smin(y_true, y_prob, terms, thr, go_dag)\n",
    "\n",
    "print(f\"\\n📊 Resultados finais (ProtBERTBFD + PAM1 + propagação):\")\n",
    "print(f\"Fmax  = {fmax:.4f}\")\n",
    "print(f\"Thr.  = {thr:.2f}\")\n",
    "print(f\"AuPRC = {auprc:.4f}\")\n",
    "print(f\"Smin  = {smin:.4f}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "70d131ef-ef84-42ee-953b-0d3f1268694d",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}