Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,24 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
import fitz # PyMuPDF
|
|
|
|
|
|
|
| 4 |
from sentence_transformers import SentenceTransformer
|
| 5 |
import faiss
|
| 6 |
import numpy as np
|
| 7 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 8 |
|
| 9 |
# --- CONFIG ---
|
| 10 |
-
|
|
|
|
| 11 |
|
| 12 |
# Load tokenizer and model with optimizations
|
| 13 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
|
| 14 |
model = AutoModelForCausalLM.from_pretrained(
|
| 15 |
"google/gemma-2b-it",
|
| 16 |
-
torch_dtype=torch.float16,
|
| 17 |
-
device_map="auto"
|
|
|
|
| 18 |
)
|
| 19 |
|
| 20 |
# Load sentence transformer model for embedding generation
|
|
@@ -25,7 +29,6 @@ st.title("π RAG App using π€ Gemma 2B")
|
|
| 25 |
|
| 26 |
uploaded_file = st.file_uploader("π Upload a PDF or TXT file", type=["pdf", "txt"])
|
| 27 |
|
| 28 |
-
# Extract text from file (PDF/TXT)
|
| 29 |
def extract_text(file):
|
| 30 |
text = ""
|
| 31 |
if file.type == "application/pdf":
|
|
@@ -36,11 +39,9 @@ def extract_text(file):
|
|
| 36 |
text = file.read().decode("utf-8")
|
| 37 |
return text
|
| 38 |
|
| 39 |
-
# Split text into chunks for indexing
|
| 40 |
def split_into_chunks(text, chunk_size=500):
|
| 41 |
return [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
|
| 42 |
|
| 43 |
-
# Create FAISS index for fast retrieval
|
| 44 |
def create_faiss_index(chunks):
|
| 45 |
embeddings = embedder.encode(chunks)
|
| 46 |
dim = embeddings.shape[1]
|
|
@@ -48,13 +49,11 @@ def create_faiss_index(chunks):
|
|
| 48 |
index.add(np.array(embeddings))
|
| 49 |
return index, embeddings
|
| 50 |
|
| 51 |
-
# Retrieve top-k relevant chunks for the query
|
| 52 |
def retrieve_chunks(query, chunks, index, embeddings, k=3):
|
| 53 |
query_embedding = embedder.encode([query])
|
| 54 |
D, I = index.search(np.array(query_embedding), k)
|
| 55 |
return [chunks[i] for i in I[0]]
|
| 56 |
|
| 57 |
-
# --- MAIN LOGIC ---
|
| 58 |
if uploaded_file:
|
| 59 |
st.success("β
File uploaded successfully!")
|
| 60 |
raw_text = extract_text(uploaded_file)
|
|
@@ -70,10 +69,12 @@ if uploaded_file:
|
|
| 70 |
with st.spinner("Thinking..."):
|
| 71 |
context = "\n".join(retrieve_chunks(user_question, chunks, index, embeddings))
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
with torch.no_grad():
|
| 77 |
outputs = model.generate(input_ids, max_length=512, num_return_sequences=1, temperature=0.7)
|
| 78 |
|
| 79 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
import fitz # PyMuPDF
|
| 4 |
+
import os
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
from sentence_transformers import SentenceTransformer
|
| 7 |
import faiss
|
| 8 |
import numpy as np
|
| 9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 10 |
|
| 11 |
# --- CONFIG ---
|
| 12 |
+
load_dotenv()
|
| 13 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 14 |
|
| 15 |
# Load tokenizer and model with optimizations
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", token=HF_TOKEN)
|
| 17 |
model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
"google/gemma-2b-it",
|
| 19 |
+
torch_dtype=torch.float16,
|
| 20 |
+
device_map="auto",
|
| 21 |
+
token=HF_TOKEN
|
| 22 |
)
|
| 23 |
|
| 24 |
# Load sentence transformer model for embedding generation
|
|
|
|
| 29 |
|
| 30 |
uploaded_file = st.file_uploader("π Upload a PDF or TXT file", type=["pdf", "txt"])
|
| 31 |
|
|
|
|
| 32 |
def extract_text(file):
|
| 33 |
text = ""
|
| 34 |
if file.type == "application/pdf":
|
|
|
|
| 39 |
text = file.read().decode("utf-8")
|
| 40 |
return text
|
| 41 |
|
|
|
|
| 42 |
def split_into_chunks(text, chunk_size=500):
|
| 43 |
return [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
|
| 44 |
|
|
|
|
| 45 |
def create_faiss_index(chunks):
|
| 46 |
embeddings = embedder.encode(chunks)
|
| 47 |
dim = embeddings.shape[1]
|
|
|
|
| 49 |
index.add(np.array(embeddings))
|
| 50 |
return index, embeddings
|
| 51 |
|
|
|
|
| 52 |
def retrieve_chunks(query, chunks, index, embeddings, k=3):
|
| 53 |
query_embedding = embedder.encode([query])
|
| 54 |
D, I = index.search(np.array(query_embedding), k)
|
| 55 |
return [chunks[i] for i in I[0]]
|
| 56 |
|
|
|
|
| 57 |
if uploaded_file:
|
| 58 |
st.success("β
File uploaded successfully!")
|
| 59 |
raw_text = extract_text(uploaded_file)
|
|
|
|
| 69 |
with st.spinner("Thinking..."):
|
| 70 |
context = "\n".join(retrieve_chunks(user_question, chunks, index, embeddings))
|
| 71 |
|
| 72 |
+
input_ids = tokenizer.encode(
|
| 73 |
+
f"Answer the question based on the context below:\n\nContext:\n{context}\n\nQuestion: {user_question}\nAnswer:",
|
| 74 |
+
return_tensors="pt"
|
| 75 |
+
).to(model.device)
|
| 76 |
|
| 77 |
+
with torch.no_grad():
|
| 78 |
outputs = model.generate(input_ids, max_length=512, num_return_sequences=1, temperature=0.7)
|
| 79 |
|
| 80 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|