Spaces:
Paused
Paused
Commit
·
c6cc468
1
Parent(s):
f76ca19
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,28 +6,24 @@ import gradio as gr
|
|
| 6 |
import numpy as np
|
| 7 |
import PIL.Image
|
| 8 |
import torch
|
| 9 |
-
from diffusers import
|
| 10 |
|
| 11 |
MAX_SEED = np.iinfo(np.int32).max
|
| 12 |
MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024'))
|
| 13 |
|
|
|
|
|
|
|
|
|
|
| 14 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 15 |
if torch.cuda.is_available():
|
| 16 |
-
|
| 17 |
-
"latent-consistency/lcm-ssd-1b",
|
| 18 |
-
torch_dtype=torch.float16,
|
| 19 |
-
variant="fp16"
|
| 20 |
-
)
|
| 21 |
-
|
| 22 |
-
pipe = DiffusionPipeline.from_pretrained(
|
| 23 |
-
"segmind/SSD-1B",
|
| 24 |
-
unet=unet,
|
| 25 |
-
torch_dtype=torch.float16,
|
| 26 |
-
variant="fp16"
|
| 27 |
-
)
|
| 28 |
-
|
| 29 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 30 |
-
pipe.to(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
else:
|
| 32 |
pipe = None
|
| 33 |
|
|
@@ -43,7 +39,6 @@ def generate(prompt: str,
|
|
| 43 |
seed: int = 0,
|
| 44 |
width: int = 1024,
|
| 45 |
height: int = 1024,
|
| 46 |
-
guidance_scale: float = 1.0,
|
| 47 |
num_inference_steps: int = 6) -> PIL.Image.Image:
|
| 48 |
|
| 49 |
generator = torch.Generator().manual_seed(seed)
|
|
@@ -55,7 +50,6 @@ def generate(prompt: str,
|
|
| 55 |
negative_prompt=negative_prompt,
|
| 56 |
width=width,
|
| 57 |
height=height,
|
| 58 |
-
guidance_scale=guidance_scale,
|
| 59 |
num_inference_steps=num_inference_steps,
|
| 60 |
generator=generator,
|
| 61 |
output_type='pil').images[0]
|
|
@@ -105,12 +99,6 @@ with gr.Blocks() as demo:
|
|
| 105 |
value=1024,
|
| 106 |
)
|
| 107 |
with gr.Row():
|
| 108 |
-
guidance_scale = gr.Slider(
|
| 109 |
-
label='Guidance scale',
|
| 110 |
-
minimum=1,
|
| 111 |
-
maximum=20,
|
| 112 |
-
step=0.1,
|
| 113 |
-
value=5.0)
|
| 114 |
num_inference_steps = gr.Slider(
|
| 115 |
label='Number of inference steps',
|
| 116 |
minimum=2,
|
|
@@ -133,7 +121,6 @@ with gr.Blocks() as demo:
|
|
| 133 |
seed,
|
| 134 |
width,
|
| 135 |
height,
|
| 136 |
-
guidance_scale,
|
| 137 |
num_inference_steps,
|
| 138 |
]
|
| 139 |
prompt.submit(
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
import PIL.Image
|
| 8 |
import torch
|
| 9 |
+
from diffusers import LCMScheduler, AutoPipelineForText2Image
|
| 10 |
|
| 11 |
MAX_SEED = np.iinfo(np.int32).max
|
| 12 |
MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024'))
|
| 13 |
|
| 14 |
+
MODEL_ID = "segmind/SSD-1B"
|
| 15 |
+
ADAPTER_ID = "latent-consistency/lcm-lora-ssd-1b"
|
| 16 |
+
|
| 17 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 18 |
if torch.cuda.is_available():
|
| 19 |
+
pipe = AutoPipelineForText2Image.from_pretrained(MODEL_ID, torch_dtype=torch.float16, variant="fp16")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 21 |
+
pipe.to("cuda")
|
| 22 |
+
|
| 23 |
+
# load and fuse
|
| 24 |
+
pipe.load_lora_weights(ADAPTER_ID)
|
| 25 |
+
pipe.fuse_lora()
|
| 26 |
+
|
| 27 |
else:
|
| 28 |
pipe = None
|
| 29 |
|
|
|
|
| 39 |
seed: int = 0,
|
| 40 |
width: int = 1024,
|
| 41 |
height: int = 1024,
|
|
|
|
| 42 |
num_inference_steps: int = 6) -> PIL.Image.Image:
|
| 43 |
|
| 44 |
generator = torch.Generator().manual_seed(seed)
|
|
|
|
| 50 |
negative_prompt=negative_prompt,
|
| 51 |
width=width,
|
| 52 |
height=height,
|
|
|
|
| 53 |
num_inference_steps=num_inference_steps,
|
| 54 |
generator=generator,
|
| 55 |
output_type='pil').images[0]
|
|
|
|
| 99 |
value=1024,
|
| 100 |
)
|
| 101 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
num_inference_steps = gr.Slider(
|
| 103 |
label='Number of inference steps',
|
| 104 |
minimum=2,
|
|
|
|
| 121 |
seed,
|
| 122 |
width,
|
| 123 |
height,
|
|
|
|
| 124 |
num_inference_steps,
|
| 125 |
]
|
| 126 |
prompt.submit(
|