Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,22 @@
|
|
| 1 |
import modelrun.py
|
| 2 |
-
from transformers import AutoTokenizer, MT5ForConditionalGeneration
|
| 3 |
-
from transformers import T5Tokenizer
|
| 4 |
-
import streamlit as st
|
| 5 |
-
import pandas as pd
|
| 6 |
-
from datasets import Dataset
|
| 7 |
-
import torch
|
| 8 |
-
from datasets import Dataset, DatasetDict
|
| 9 |
-
from transformers import Trainer, TrainingArguments
|
| 10 |
|
| 11 |
|
| 12 |
-
prompt = st.text_input("Enter your proverb: ")
|
| 13 |
|
| 14 |
-
# Tokenize the input prompt
|
| 15 |
-
input_ids = tokenizer.encode(prompt, return_tensors='pt')
|
| 16 |
|
| 17 |
-
# Generate the output
|
| 18 |
-
output_ids = model.generate(input_ids, max_length=256)
|
| 19 |
|
| 20 |
-
# Decode the output to text
|
| 21 |
-
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 22 |
-
st.write(output_text)
|
|
|
|
| 1 |
import modelrun.py
|
| 2 |
+
# from transformers import AutoTokenizer, MT5ForConditionalGeneration
|
| 3 |
+
# from transformers import T5Tokenizer
|
| 4 |
+
# import streamlit as st
|
| 5 |
+
# import pandas as pd
|
| 6 |
+
# from datasets import Dataset
|
| 7 |
+
# import torch
|
| 8 |
+
# from datasets import Dataset, DatasetDict
|
| 9 |
+
# from transformers import Trainer, TrainingArguments
|
| 10 |
|
| 11 |
|
| 12 |
+
# prompt = st.text_input("Enter your proverb: ")
|
| 13 |
|
| 14 |
+
# # Tokenize the input prompt
|
| 15 |
+
# input_ids = tokenizer.encode(prompt, return_tensors='pt')
|
| 16 |
|
| 17 |
+
# # Generate the output
|
| 18 |
+
# output_ids = model.generate(input_ids, max_length=256)
|
| 19 |
|
| 20 |
+
# # Decode the output to text
|
| 21 |
+
# output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 22 |
+
# st.write(output_text)
|