Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import huggingface_hub
|
| 3 |
+
import os
|
| 4 |
+
import subprocess
|
| 5 |
+
import threading
|
| 6 |
+
|
| 7 |
+
# download model
|
| 8 |
+
huggingface_hub.hf_hub_download(
|
| 9 |
+
repo_id='ariesssxu/vta-ldm-clip4clip-v-large',
|
| 10 |
+
local_dir='./ckpt'
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
def stream_output(pipe):
|
| 14 |
+
for line in iter(pipe.readline, ''):
|
| 15 |
+
print(line, end='')
|
| 16 |
+
|
| 17 |
+
def print_directory_contents(path):
|
| 18 |
+
for root, dirs, files in os.walk(path):
|
| 19 |
+
level = root.replace(path, '').count(os.sep)
|
| 20 |
+
indent = ' ' * 4 * (level)
|
| 21 |
+
print(f"{indent}{os.path.basename(root)}/")
|
| 22 |
+
subindent = ' ' * 4 * (level + 1)
|
| 23 |
+
for f in files:
|
| 24 |
+
print(f"{subindent}{f}")
|
| 25 |
+
|
| 26 |
+
def infer(video_in):
|
| 27 |
+
|
| 28 |
+
# Need to find path to gradio temp vid from video input
|
| 29 |
+
# path_to_video
|
| 30 |
+
|
| 31 |
+
print(f"VIDEO IN PATH: {video_in}")
|
| 32 |
+
|
| 33 |
+
# Execute the inference command
|
| 34 |
+
command = ['python', 'inference_from_video.py', '--data_path', video_in]
|
| 35 |
+
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1)
|
| 36 |
+
|
| 37 |
+
# Create threads to handle stdout and stderr
|
| 38 |
+
stdout_thread = threading.Thread(target=stream_output, args=(process.stdout,))
|
| 39 |
+
stderr_thread = threading.Thread(target=stream_output, args=(process.stderr,))
|
| 40 |
+
|
| 41 |
+
# Start the threads
|
| 42 |
+
stdout_thread.start()
|
| 43 |
+
stderr_thread.start()
|
| 44 |
+
|
| 45 |
+
# Wait for the process to complete and the threads to finish
|
| 46 |
+
process.wait()
|
| 47 |
+
stdout_thread.join()
|
| 48 |
+
stderr_thread.join()
|
| 49 |
+
|
| 50 |
+
print("Inference script finished with return code:", process.returncode)
|
| 51 |
+
|
| 52 |
+
# Need to find where are the results stored, default should be "./outputs/tmp"
|
| 53 |
+
# Print the outputs directory contents
|
| 54 |
+
print_directory_contents('./outputs/tmp')
|
| 55 |
+
return "done"
|
| 56 |
+
|
| 57 |
+
with gr.Blocks() as demo:
|
| 58 |
+
with gr.Column(elem_id="col-container"):
|
| 59 |
+
gr.Markdown("# Video-To-Audio")
|
| 60 |
+
video_in = gr.Video(label='Video IN')
|
| 61 |
+
submit_btn = gr.Button("Submit")
|
| 62 |
+
#output_sound = gr.Audio(label="Audio OUT")
|
| 63 |
+
output_sound = gr.Textbox(label="Audio OUT")
|
| 64 |
+
submit_btn.click(
|
| 65 |
+
fn = infer,
|
| 66 |
+
inputs = [video_in],
|
| 67 |
+
outputs = [output_sound],
|
| 68 |
+
show_api = False
|
| 69 |
+
)
|
| 70 |
+
demo.launch(show_api=False, show_error=True)
|