Spaces:
Runtime error
Runtime error
| import os | |
| from uuid import uuid4 | |
| import pandas as pd | |
| from datasets import load_dataset | |
| import subprocess | |
| from transformers import AutoTokenizer | |
| ### Read environment variables | |
| # from dotenv import load_dotenv,find_dotenv | |
| # load_dotenv(find_dotenv(),override=True) | |
| ### Functions | |
| def max_token_len(dataset): | |
| max_seq_length = 0 | |
| for row in dataset: | |
| tokens = len(tokenizer(row['text'])['input_ids']) | |
| if tokens > max_seq_length: | |
| max_seq_length = tokens | |
| return max_seq_length | |
| ### Model details | |
| # model_name='TinyLlama/TinyLlama-1.1B-Chat-v0.1' | |
| model_name = 'mistralai/Mistral-7B-v0.1' | |
| # model_name = 'distilbert-base-uncased' | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model_max_length = tokenizer.model_max_length | |
| print("Model Max Length:", model_max_length) | |
| ### Repo name, dataset initialization, and data directory | |
| # Load dataset | |
| dataset_name = 'ai-aerospace/ams_data_train_generic_v0.1_100' | |
| dataset=load_dataset(dataset_name) | |
| # Write dataset files into data directory | |
| data_directory = './fine_tune_data/' | |
| # Create the data directory if it doesn't exist | |
| os.makedirs(data_directory, exist_ok=True) | |
| # Write the train data to a CSV file | |
| train_data='train_data' | |
| train_filename = os.path.join(data_directory, train_data) | |
| dataset['train'].to_pandas().to_csv(train_filename+'.csv', columns=['text'], index=False) | |
| max_token_length_train=max_token_len(dataset['train']) | |
| print('Max token length train: '+str(max_token_length_train)) | |
| # Write the validation data to a CSV file | |
| validation_data='validation_data' | |
| validation_filename = os.path.join(data_directory, validation_data) | |
| dataset['validation'].to_pandas().to_csv(validation_filename+'.csv', columns=['text'], index=False) | |
| max_token_length_validation=max_token_len(dataset['validation']) | |
| print('Max token length validation: '+str(max_token_length_validation)) | |
| max_token_length=max(max_token_length_train,max_token_length_validation) | |
| if max_token_length > model_max_length: | |
| raise ValueError("Maximum token length exceeds model limits.") | |
| block_size=2*max_token_length | |
| # Define project parameters | |
| username='ai-aerospace' | |
| project_name='./llms/'+'ams_data_train-100_'+str(uuid4()) | |
| repo_name='ams-data-train-100-'+str(uuid4()) | |
| ### Set training params | |
| model_params={ | |
| "project_name": project_name, | |
| "model_name": model_name, | |
| "repo_id": username+'/'+repo_name, | |
| "train_data": train_data, | |
| "validation_data": validation_data, | |
| "data_directory": data_directory, | |
| "block_size": block_size, | |
| "model_max_length": max_token_length, | |
| "logging_steps": -1, | |
| "evaluation_strategy": "epoch", | |
| "save_total_limit": 1, | |
| "save_strategy": "epoch", | |
| "mixed_precision": "fp16", | |
| "lr": 0.00003, | |
| "epochs": 3, | |
| "batch_size": 2, | |
| "warmup_ratio": 0.1, | |
| "gradient_accumulation": 1, | |
| "optimizer": "adamw_torch", | |
| "scheduler": "linear", | |
| "weight_decay": 0, | |
| "max_grad_norm": 1, | |
| "seed": 42, | |
| "quantization": "int4", | |
| "target_modules": "", | |
| "lora_r": 16, | |
| "lora_alpha": 32, | |
| "lora_dropout": 0.05 | |
| } | |
| for key, value in model_params.items(): | |
| os.environ[key] = str(value) | |
| ### Feed into and run autotrain command | |
| # Set .venv and execute the autotrain script | |
| # To see all parameters: autotrain llm --help | |
| # !autotrain llm --train --project_name my-llm --model TinyLlama/TinyLlama-1.1B-Chat-v0.1 --data_path . --use-peft --use_int4 --learning_rate 2e-4 --train_batch_size 6 --num_train_epochs 3 --trainer sft | |
| command=f""" | |
| autotrain llm --train \ | |
| --trainer sft \ | |
| --project_name {model_params['project_name']} \ | |
| --model {model_params['model_name']} \ | |
| --data_path {model_params['data_directory']} \ | |
| --train_split {model_params['train_data']} \ | |
| --valid_split {model_params['validation_data']} \ | |
| --repo_id {model_params['repo_id']} \ | |
| --push_to_hub \ | |
| --token HUGGINGFACE_TOKEN | |
| --block_size {model_params['block_size']} \ | |
| --model_max_length {model_params['model_max_length']} \ | |
| --logging_steps {model_params['logging_steps']} \ | |
| --evaluation_strategy {model_params['evaluation_strategy']} \ | |
| --save_total_limit {model_params['save_total_limit']} \ | |
| --save_strategy {model_params['save_strategy']} \ | |
| --fp16 \ | |
| --lr {model_params['lr']} \ | |
| --num_train_epochs {model_params['lr']} \ | |
| --batch_size {model_params['batch_size']} \ | |
| --warmup_ratio {model_params['warmup_ratio']} \ | |
| --gradient_accumulation {model_params['gradient_accumulation']} \ | |
| --optimizer {model_params['gradient_accumulation']} \ | |
| --scheduler linear \ | |
| --weight_decay {model_params['weight_decay']} \ | |
| --max_grad_norm {model_params['max_grad_norm']} \ | |
| --seed {model_params['seed']} \ | |
| --use_int4 \ | |
| --target_modules {model_params['target_modules']} \ | |
| --use-peft \ | |
| --lora_r {model_params['lora_r']} \ | |
| --lora_alpha {model_params['lora_alpha']} \ | |
| --lora_dropout {model_params['lora_dropout']} | |
| """ | |
| # Use subprocess.run() to execute the command | |
| subprocess.run(command, shell=True, check=True) |