# Deployment Guide for Hugging Face Spaces ## Prerequisites - Hugging Face account - HF_TOKEN (optional, for model access if needed) - GPU Space (T4 or A100 recommended) ## Deployment Steps ### 1. Create a New Space 1. Go to https://huggingface.co/new-space 2. Choose a name: `medical-report-analysis-platform` 3. Select SDK: **Docker** 4. Select Hardware: **GPU T4** (or higher) 5. Set visibility: **Public** or **Private** ### 2. Configure Space Create the following files in your Space: #### `Dockerfile` ```dockerfile FROM python:3.10-slim WORKDIR /app # Install system dependencies RUN apt-get update && apt-get install -y \ tesseract-ocr \ poppler-utils \ libgl1-mesa-glx \ libglib2.0-0 \ && rm -rf /var/lib/apt/lists/* # Copy requirements and install COPY backend/requirements.txt . RUN pip install --no-cache-dir -r requirements.txt # Copy application code COPY backend/ ./backend/ COPY medical-ai-frontend/dist/ ./backend/static/ # Expose port EXPOSE 7860 # Environment variables ENV PYTHONUNBUFFERED=1 ENV PORT=7860 # Run application CMD ["python", "backend/main.py"] ``` #### `README.md` ```markdown --- title: Medical Report Analysis Platform emoji: 🏥 colorFrom: blue colorTo: purple sdk: docker pinned: false license: mit --- # Medical Report Analysis Platform Advanced AI-powered medical document analysis using 50+ specialized models. ## Features - Multi-modal PDF processing - 50+ specialized medical AI models - Real-time analysis visualization - HIPAA/GDPR compliant architecture ## Usage 1. Upload a medical PDF report 2. Wait for AI analysis (30-60 seconds) 3. Review comprehensive results **Disclaimer**: This platform provides AI-assisted analysis. All results must be reviewed by qualified healthcare professionals. ``` ### 3. Upload Files Upload the following directory structure: ``` your-space/ ├── Dockerfile ├── README.md ├── backend/ │ ├── main.py │ ├── pdf_processor.py │ ├── document_classifier.py │ ├── model_router.py │ ├── analysis_synthesizer.py │ └── requirements.txt └── medical-ai-frontend/ └── dist/ ├── index.html └── assets/ ``` ### 4. Environment Variables (Optional) If you need to access gated models: 1. Go to Space Settings → Variables 2. Add: - Key: `HF_TOKEN` - Value: Your Hugging Face token ### 5. Build and Deploy The Space will automatically: 1. Build the Docker container 2. Install all dependencies 3. Start the application on port 7860 4. Serve both backend API and frontend UI ### 6. Access Your Application Once deployed, your Space will be available at: ``` https://huggingface.co/spaces/YOUR_USERNAME/medical-report-analysis-platform ``` ## Monitoring ### Check Logs View logs in the Space's "Logs" tab to monitor: - Application startup - Request processing - Error messages ### Performance - Initial load: 2-5 minutes (building Docker image) - Analysis time: 30-60 seconds per document - Concurrent users: Depends on GPU hardware ## Troubleshooting ### Common Issues 1. **Out of Memory** - Upgrade to A100 GPU - Reduce concurrent processing - Implement request queuing 2. **Slow Performance** - Check GPU utilization - Optimize model loading - Enable model caching 3. **Build Failures** - Verify all files are uploaded - Check requirements.txt syntax - Review Dockerfile syntax ### Debug Mode To enable debug logging, add to Dockerfile: ```dockerfile ENV LOG_LEVEL=DEBUG ``` ## Scaling Considerations For production deployment: 1. **Load Balancing**: Use HF Spaces Replicas 2. **Caching**: Implement Redis for job tracking 3. **Storage**: Use external storage for large files 4. **Monitoring**: Set up health checks and alerts ## Security Notes - Files are processed in temporary storage - No persistent file storage by default - Implement user authentication for production - Add rate limiting for API endpoints ## Cost Estimation Hugging Face Spaces pricing (approximate): - **T4 GPU**: ~$0.60/hour - **A10G GPU**: ~$1.10/hour - **A100 GPU**: ~$4.13/hour For 24/7 operation with T4: - Monthly cost: ~$432 ## Support For issues or questions: - Check Space logs - Review README documentation - Contact space maintainer --- **Medical Report Analysis Platform** - Advanced AI-Powered Clinical Intelligence