Spaces:
Running
Running
Deploy preprocessing_pipeline.py to backend/ directory
Browse files
backend/preprocessing_pipeline.py
ADDED
|
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Medical Preprocessing Pipeline - Phase 2
|
| 3 |
+
Central orchestration layer for medical file processing and extraction.
|
| 4 |
+
|
| 5 |
+
This module coordinates all preprocessing components including file detection,
|
| 6 |
+
PHI de-identification, and modality-specific extraction to produce structured data
|
| 7 |
+
for AI model processing.
|
| 8 |
+
|
| 9 |
+
Author: MiniMax Agent
|
| 10 |
+
Date: 2025-10-29
|
| 11 |
+
Version: 1.0.0
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
import os
|
| 15 |
+
import json
|
| 16 |
+
import logging
|
| 17 |
+
import time
|
| 18 |
+
from typing import Dict, List, Optional, Any, Tuple
|
| 19 |
+
from dataclasses import dataclass, asdict
|
| 20 |
+
from pathlib import Path
|
| 21 |
+
import traceback
|
| 22 |
+
|
| 23 |
+
from file_detector import MedicalFileDetector, FileDetectionResult, MedicalFileType
|
| 24 |
+
from phi_deidentifier import MedicalPHIDeidentifier, DeidentificationResult, PHICategory
|
| 25 |
+
from pdf_extractor import MedicalPDFProcessor, ExtractionResult
|
| 26 |
+
from dicom_processor import DICOMProcessor, DICOMProcessingResult
|
| 27 |
+
from ecg_processor import ECGSignalProcessor, ECGProcessingResult
|
| 28 |
+
from medical_schemas import (
|
| 29 |
+
ValidationResult, validate_document_schema, route_to_specialized_model,
|
| 30 |
+
MedicalDocumentMetadata, ConfidenceScore
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
logger = logging.getLogger(__name__)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@dataclass
|
| 37 |
+
class ProcessingPipelineResult:
|
| 38 |
+
"""Result of complete preprocessing pipeline"""
|
| 39 |
+
document_id: str
|
| 40 |
+
file_detection: FileDetectionResult
|
| 41 |
+
deidentification_result: Optional[DeidentificationResult]
|
| 42 |
+
extraction_result: Any # Can be ExtractionResult, DICOMProcessingResult, or ECGProcessingResult
|
| 43 |
+
structured_data: Dict[str, Any]
|
| 44 |
+
validation_result: ValidationResult
|
| 45 |
+
model_routing: Dict[str, Any]
|
| 46 |
+
processing_time: float
|
| 47 |
+
pipeline_metadata: Dict[str, Any]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class MedicalPreprocessingPipeline:
|
| 51 |
+
"""Main preprocessing pipeline for medical documents"""
|
| 52 |
+
|
| 53 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 54 |
+
self.config = config or self._default_config()
|
| 55 |
+
|
| 56 |
+
# Initialize components
|
| 57 |
+
self.file_detector = MedicalFileDetector()
|
| 58 |
+
self.phi_deidentifier = MedicalPHIDeidentifier(self.config.get('phi_config', {}))
|
| 59 |
+
self.pdf_processor = MedicalPDFProcessor()
|
| 60 |
+
self.dicom_processor = DICOMProcessor()
|
| 61 |
+
self.ecg_processor = ECGSignalProcessor()
|
| 62 |
+
|
| 63 |
+
# Pipeline statistics
|
| 64 |
+
self.stats = {
|
| 65 |
+
"total_processed": 0,
|
| 66 |
+
"successful_processing": 0,
|
| 67 |
+
"phi_deidentified": 0,
|
| 68 |
+
"validation_passed": 0,
|
| 69 |
+
"processing_times": [],
|
| 70 |
+
"error_counts": {}
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
logger.info("Medical Preprocessing Pipeline initialized")
|
| 74 |
+
|
| 75 |
+
def _default_config(self) -> Dict[str, Any]:
|
| 76 |
+
"""Default pipeline configuration"""
|
| 77 |
+
return {
|
| 78 |
+
"enable_phi_deidentification": True,
|
| 79 |
+
"enable_validation": True,
|
| 80 |
+
"enable_model_routing": True,
|
| 81 |
+
"max_file_size_mb": 100,
|
| 82 |
+
"supported_formats": [".pdf", ".dcm", ".dicom", ".xml", ".scp", ".csv"],
|
| 83 |
+
"phi_config": {
|
| 84 |
+
"compliance_level": "HIPAA",
|
| 85 |
+
"use_hashing": True,
|
| 86 |
+
"redaction_method": "placeholder"
|
| 87 |
+
},
|
| 88 |
+
"validation_strict_mode": False,
|
| 89 |
+
"output_format": "schema_compliant"
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
def process_document(self, file_path: str, document_type: str = "auto") -> ProcessingPipelineResult:
|
| 93 |
+
"""
|
| 94 |
+
Process a single medical document through the complete pipeline
|
| 95 |
+
|
| 96 |
+
Args:
|
| 97 |
+
file_path: Path to medical document
|
| 98 |
+
document_type: Document type hint ("auto", "radiology", "laboratory", etc.)
|
| 99 |
+
|
| 100 |
+
Returns:
|
| 101 |
+
ProcessingPipelineResult with complete processing results
|
| 102 |
+
"""
|
| 103 |
+
start_time = time.time()
|
| 104 |
+
document_id = self._generate_document_id(file_path)
|
| 105 |
+
|
| 106 |
+
try:
|
| 107 |
+
logger.info(f"Starting processing pipeline for document: {file_path}")
|
| 108 |
+
|
| 109 |
+
# Step 1: File Detection and Analysis
|
| 110 |
+
file_detection = self._detect_and_analyze_file(file_path)
|
| 111 |
+
|
| 112 |
+
# Step 2: PHI De-identification (if enabled and needed)
|
| 113 |
+
deidentification_result = None
|
| 114 |
+
if self.config["enable_phi_deidentification"]:
|
| 115 |
+
deidentification_result = self._perform_phi_deidentification(file_path, file_detection)
|
| 116 |
+
|
| 117 |
+
# Step 3: Extract Structured Data
|
| 118 |
+
extraction_result = self._extract_structured_data(file_path, file_detection, document_type)
|
| 119 |
+
|
| 120 |
+
# Step 4: Validate Against Schema
|
| 121 |
+
validation_result = self._validate_extracted_data(extraction_result)
|
| 122 |
+
|
| 123 |
+
# Step 5: Model Routing
|
| 124 |
+
model_routing = self._determine_model_routing(extraction_result, validation_result)
|
| 125 |
+
|
| 126 |
+
# Step 6: Compile Final Results
|
| 127 |
+
processing_time = time.time() - start_time
|
| 128 |
+
|
| 129 |
+
pipeline_metadata = {
|
| 130 |
+
"pipeline_version": "1.0.0",
|
| 131 |
+
"processing_timestamp": time.time(),
|
| 132 |
+
"file_size": os.path.getsize(file_path) if os.path.exists(file_path) else 0,
|
| 133 |
+
"config_used": self.config
|
| 134 |
+
}
|
| 135 |
+
|
| 136 |
+
result = ProcessingPipelineResult(
|
| 137 |
+
document_id=document_id,
|
| 138 |
+
file_detection=file_detection,
|
| 139 |
+
deidentification_result=deidentification_result,
|
| 140 |
+
extraction_result=extraction_result,
|
| 141 |
+
structured_data=self._compile_structured_data(extraction_result, deidentification_result),
|
| 142 |
+
validation_result=validation_result,
|
| 143 |
+
model_routing=model_routing,
|
| 144 |
+
processing_time=processing_time,
|
| 145 |
+
pipeline_metadata=pipeline_metadata
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
# Update statistics
|
| 149 |
+
self._update_statistics(result, True)
|
| 150 |
+
|
| 151 |
+
logger.info(f"Pipeline processing completed successfully in {processing_time:.2f}s")
|
| 152 |
+
return result
|
| 153 |
+
|
| 154 |
+
except Exception as e:
|
| 155 |
+
logger.error(f"Pipeline processing failed: {str(e)}")
|
| 156 |
+
|
| 157 |
+
# Create error result
|
| 158 |
+
error_result = ProcessingPipelineResult(
|
| 159 |
+
document_id=document_id,
|
| 160 |
+
file_detection=FileDetectionResult(
|
| 161 |
+
file_type=MedicalFileType.UNKNOWN,
|
| 162 |
+
confidence=0.0,
|
| 163 |
+
detected_features=["processing_error"],
|
| 164 |
+
mime_type="application/octet-stream",
|
| 165 |
+
file_size=0,
|
| 166 |
+
metadata={"error": str(e)},
|
| 167 |
+
recommended_extractor="error_handler"
|
| 168 |
+
),
|
| 169 |
+
deidentification_result=None,
|
| 170 |
+
extraction_result=None,
|
| 171 |
+
structured_data={"error": str(e), "traceback": traceback.format_exc()},
|
| 172 |
+
validation_result=ValidationResult(is_valid=False, validation_errors=[str(e)]),
|
| 173 |
+
model_routing={"error": str(e)},
|
| 174 |
+
processing_time=time.time() - start_time,
|
| 175 |
+
pipeline_metadata={"error": str(e), "processing_timestamp": time.time()}
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
# Update statistics
|
| 179 |
+
self._update_statistics(error_result, False)
|
| 180 |
+
|
| 181 |
+
return error_result
|
| 182 |
+
|
| 183 |
+
def _detect_and_analyze_file(self, file_path: str) -> FileDetectionResult:
|
| 184 |
+
"""Detect file type and characteristics"""
|
| 185 |
+
try:
|
| 186 |
+
result = self.file_detector.detect_file_type(file_path)
|
| 187 |
+
logger.info(f"File detected: {result.file_type.value} (confidence: {result.confidence:.2f})")
|
| 188 |
+
return result
|
| 189 |
+
except Exception as e:
|
| 190 |
+
logger.error(f"File detection error: {str(e)}")
|
| 191 |
+
raise
|
| 192 |
+
|
| 193 |
+
def _perform_phi_deidentification(self, file_path: str,
|
| 194 |
+
file_detection: FileDetectionResult) -> Optional[DeidentificationResult]:
|
| 195 |
+
"""Perform PHI de-identification if needed"""
|
| 196 |
+
try:
|
| 197 |
+
# Determine document type for PHI processing
|
| 198 |
+
doc_type_mapping = {
|
| 199 |
+
MedicalFileType.PDF_CLINICAL: "clinical_notes",
|
| 200 |
+
MedicalFileType.PDF_RADIOLOGY: "radiology",
|
| 201 |
+
MedicalFileType.PDF_LABORATORY: "laboratory",
|
| 202 |
+
MedicalFileType.PDF_ECG_REPORT: "ecg",
|
| 203 |
+
MedicalFileType.DICOM_CT: "radiology",
|
| 204 |
+
MedicalFileType.DICOM_MRI: "radiology",
|
| 205 |
+
MedicalFileType.DICOM_XRAY: "radiology",
|
| 206 |
+
MedicalFileType.DICOM_ULTRASOUND: "radiology",
|
| 207 |
+
MedicalFileType.ECG_XML: "ecg",
|
| 208 |
+
MedicalFileType.ECG_SCPE: "ecg",
|
| 209 |
+
MedicalFileType.ECG_CSV: "ecg"
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
doc_type = doc_type_mapping.get(file_detection.file_type, "general")
|
| 213 |
+
|
| 214 |
+
# Read file content for PHI detection
|
| 215 |
+
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
|
| 216 |
+
content = f.read()
|
| 217 |
+
|
| 218 |
+
if content:
|
| 219 |
+
result = self.phi_deidentifier.deidentify_text(content, doc_type)
|
| 220 |
+
logger.info(f"PHI de-identification completed: {len(result.phi_matches)} PHI entities found")
|
| 221 |
+
return result
|
| 222 |
+
else:
|
| 223 |
+
logger.warning("No text content found for PHI de-identification")
|
| 224 |
+
return None
|
| 225 |
+
|
| 226 |
+
except Exception as e:
|
| 227 |
+
logger.error(f"PHI de-identification error: {str(e)}")
|
| 228 |
+
return None
|
| 229 |
+
|
| 230 |
+
def _extract_structured_data(self, file_path: str, file_detection: FileDetectionResult,
|
| 231 |
+
document_type: str) -> Any:
|
| 232 |
+
"""Extract structured data based on file type"""
|
| 233 |
+
try:
|
| 234 |
+
# Route to appropriate extractor based on file type
|
| 235 |
+
if file_detection.file_type in [MedicalFileType.PDF_CLINICAL, MedicalFileType.PDF_RADIOLOGY,
|
| 236 |
+
MedicalFileType.PDF_LABORATORY, MedicalFileType.PDF_ECG_REPORT]:
|
| 237 |
+
# PDF processing
|
| 238 |
+
doc_type = "unknown"
|
| 239 |
+
if file_detection.file_type == MedicalFileType.PDF_RADIOLOGY:
|
| 240 |
+
doc_type = "radiology"
|
| 241 |
+
elif file_detection.file_type == MedicalFileType.PDF_LABORATORY:
|
| 242 |
+
doc_type = "laboratory"
|
| 243 |
+
elif file_detection.file_type == MedicalFileType.PDF_ECG_REPORT:
|
| 244 |
+
doc_type = "ecg_report"
|
| 245 |
+
elif file_detection.file_type == MedicalFileType.PDF_CLINICAL:
|
| 246 |
+
doc_type = "clinical_notes"
|
| 247 |
+
|
| 248 |
+
result = self.pdf_processor.process_pdf(file_path, doc_type)
|
| 249 |
+
logger.info(f"PDF processing completed: {result.extraction_method}")
|
| 250 |
+
return result
|
| 251 |
+
|
| 252 |
+
elif file_detection.file_type in [MedicalFileType.DICOM_CT, MedicalFileType.DICOM_MRI,
|
| 253 |
+
MedicalFileType.DICOM_XRAY, MedicalFileType.DICOM_ULTRASOUND]:
|
| 254 |
+
# DICOM processing
|
| 255 |
+
result = self.dicom_processor.process_dicom_file(file_path)
|
| 256 |
+
logger.info(f"DICOM processing completed: {result.modality}")
|
| 257 |
+
return result
|
| 258 |
+
|
| 259 |
+
elif file_detection.file_type in [MedicalFileType.ECG_XML, MedicalFileType.ECG_SCPE,
|
| 260 |
+
MedicalFileType.ECG_CSV]:
|
| 261 |
+
# ECG processing
|
| 262 |
+
format_mapping = {
|
| 263 |
+
MedicalFileType.ECG_XML: "xml",
|
| 264 |
+
MedicalFileType.ECG_SCPE: "scp",
|
| 265 |
+
MedicalFileType.ECG_CSV: "csv"
|
| 266 |
+
}
|
| 267 |
+
ecg_format = format_mapping.get(file_detection.file_type, "auto")
|
| 268 |
+
|
| 269 |
+
result = self.ecg_processor.process_ecg_file(file_path, ecg_format)
|
| 270 |
+
logger.info(f"ECG processing completed: {len(result.lead_names)} leads")
|
| 271 |
+
return result
|
| 272 |
+
|
| 273 |
+
else:
|
| 274 |
+
raise ValueError(f"No appropriate extractor for file type: {file_detection.file_type}")
|
| 275 |
+
|
| 276 |
+
except Exception as e:
|
| 277 |
+
logger.error(f"Data extraction error: {str(e)}")
|
| 278 |
+
raise
|
| 279 |
+
|
| 280 |
+
def _validate_extracted_data(self, extraction_result: Any) -> ValidationResult:
|
| 281 |
+
"""Validate extracted data against medical schemas"""
|
| 282 |
+
if not self.config["enable_validation"]:
|
| 283 |
+
return ValidationResult(is_valid=True, compliance_score=1.0)
|
| 284 |
+
|
| 285 |
+
try:
|
| 286 |
+
# Convert extraction result to dictionary format
|
| 287 |
+
if hasattr(extraction_result, 'structured_data'):
|
| 288 |
+
# PDF extraction result
|
| 289 |
+
structured_data = extraction_result.structured_data
|
| 290 |
+
elif hasattr(extraction_result, 'metadata') and hasattr(extraction_result, 'confidence_score'):
|
| 291 |
+
# DICOM or ECG processing result
|
| 292 |
+
structured_data = asdict(extraction_result)
|
| 293 |
+
else:
|
| 294 |
+
structured_data = {"raw_data": extraction_result}
|
| 295 |
+
|
| 296 |
+
# Determine document type from extraction result
|
| 297 |
+
doc_type = "unknown"
|
| 298 |
+
if "document_type" in structured_data:
|
| 299 |
+
doc_type = structured_data["document_type"]
|
| 300 |
+
elif "modality" in structured_data:
|
| 301 |
+
doc_type = "radiology"
|
| 302 |
+
elif "signal_data" in structured_data:
|
| 303 |
+
doc_type = "ECG"
|
| 304 |
+
|
| 305 |
+
# Add metadata for validation
|
| 306 |
+
if "metadata" not in structured_data:
|
| 307 |
+
structured_data["metadata"] = {
|
| 308 |
+
"source_type": doc_type,
|
| 309 |
+
"extraction_timestamp": time.time()
|
| 310 |
+
}
|
| 311 |
+
|
| 312 |
+
# Validate against schema
|
| 313 |
+
validation_result = validate_document_schema(structured_data)
|
| 314 |
+
|
| 315 |
+
if validation_result.is_valid:
|
| 316 |
+
logger.info(f"Schema validation passed: {doc_type}")
|
| 317 |
+
else:
|
| 318 |
+
logger.warning(f"Schema validation failed: {validation_result.validation_errors}")
|
| 319 |
+
|
| 320 |
+
return validation_result
|
| 321 |
+
|
| 322 |
+
except Exception as e:
|
| 323 |
+
logger.error(f"Validation error: {str(e)}")
|
| 324 |
+
return ValidationResult(
|
| 325 |
+
is_valid=False,
|
| 326 |
+
validation_errors=[str(e)],
|
| 327 |
+
compliance_score=0.0
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
def _determine_model_routing(self, extraction_result: Any,
|
| 331 |
+
validation_result: ValidationResult) -> Dict[str, Any]:
|
| 332 |
+
"""Determine appropriate AI model routing"""
|
| 333 |
+
if not self.config["enable_model_routing"]:
|
| 334 |
+
return {"routing_disabled": True}
|
| 335 |
+
|
| 336 |
+
try:
|
| 337 |
+
# Extract document data for routing decision
|
| 338 |
+
if hasattr(extraction_result, 'structured_data'):
|
| 339 |
+
structured_data = extraction_result.structured_data
|
| 340 |
+
else:
|
| 341 |
+
structured_data = asdict(extraction_result)
|
| 342 |
+
|
| 343 |
+
# Use schema routing function
|
| 344 |
+
recommended_model = route_to_specialized_model(structured_data)
|
| 345 |
+
|
| 346 |
+
routing_info = {
|
| 347 |
+
"recommended_model": recommended_model,
|
| 348 |
+
"validation_passed": validation_result.is_valid,
|
| 349 |
+
"confidence_threshold_met": validation_result.compliance_score > 0.6,
|
| 350 |
+
"requires_human_review": validation_result.compliance_score < 0.85,
|
| 351 |
+
"routing_confidence": validation_result.compliance_score
|
| 352 |
+
}
|
| 353 |
+
|
| 354 |
+
logger.info(f"Model routing: {recommended_model} (confidence: {validation_result.compliance_score:.2f})")
|
| 355 |
+
return routing_info
|
| 356 |
+
|
| 357 |
+
except Exception as e:
|
| 358 |
+
logger.error(f"Model routing error: {str(e)}")
|
| 359 |
+
return {"error": str(e), "fallback_model": "generic_processor"}
|
| 360 |
+
|
| 361 |
+
def _compile_structured_data(self, extraction_result: Any,
|
| 362 |
+
deidentification_result: Optional[DeidentificationResult]) -> Dict[str, Any]:
|
| 363 |
+
"""Compile final structured data output"""
|
| 364 |
+
try:
|
| 365 |
+
# Start with extraction result
|
| 366 |
+
if hasattr(extraction_result, 'structured_data'):
|
| 367 |
+
structured_data = extraction_result.structured_data.copy()
|
| 368 |
+
else:
|
| 369 |
+
structured_data = asdict(extraction_result)
|
| 370 |
+
|
| 371 |
+
# Add de-identification information
|
| 372 |
+
if deidentification_result:
|
| 373 |
+
structured_data["phi_deidentification"] = {
|
| 374 |
+
"phi_entities_removed": len(deidentification_result.phi_matches),
|
| 375 |
+
"deidentification_method": deidentification_result.anonymization_method,
|
| 376 |
+
"original_hash": deidentification_result.hash_original,
|
| 377 |
+
"compliance_level": deidentification_result.compliance_level
|
| 378 |
+
}
|
| 379 |
+
|
| 380 |
+
# Add extraction metadata
|
| 381 |
+
if hasattr(extraction_result, 'metadata'):
|
| 382 |
+
structured_data["extraction_metadata"] = extraction_result.metadata
|
| 383 |
+
|
| 384 |
+
# Add confidence scores
|
| 385 |
+
if hasattr(extraction_result, 'confidence_scores'):
|
| 386 |
+
structured_data["extraction_confidence"] = extraction_result.confidence_scores
|
| 387 |
+
|
| 388 |
+
return structured_data
|
| 389 |
+
|
| 390 |
+
except Exception as e:
|
| 391 |
+
logger.error(f"Data compilation error: {str(e)}")
|
| 392 |
+
return {"error": str(e)}
|
| 393 |
+
|
| 394 |
+
def _generate_document_id(self, file_path: str) -> str:
|
| 395 |
+
"""Generate unique document ID"""
|
| 396 |
+
import hashlib
|
| 397 |
+
file_stat = os.stat(file_path)
|
| 398 |
+
identifier = f"{file_path}_{file_stat.st_size}_{file_stat.st_mtime}"
|
| 399 |
+
return hashlib.md5(identifier.encode()).hexdigest()[:12]
|
| 400 |
+
|
| 401 |
+
def _update_statistics(self, result: ProcessingPipelineResult, success: bool):
|
| 402 |
+
"""Update pipeline statistics"""
|
| 403 |
+
self.stats["total_processed"] += 1
|
| 404 |
+
|
| 405 |
+
if success:
|
| 406 |
+
self.stats["successful_processing"] += 1
|
| 407 |
+
|
| 408 |
+
if result.deidentification_result:
|
| 409 |
+
self.stats["phi_deidentified"] += 1
|
| 410 |
+
|
| 411 |
+
if result.validation_result.is_valid:
|
| 412 |
+
self.stats["validation_passed"] += 1
|
| 413 |
+
|
| 414 |
+
self.stats["processing_times"].append(result.processing_time)
|
| 415 |
+
|
| 416 |
+
# Track errors
|
| 417 |
+
if not success:
|
| 418 |
+
error_type = type(result.structured_data.get("error", Exception())).__name__
|
| 419 |
+
self.stats["error_counts"][error_type] = self.stats["error_counts"].get(error_type, 0) + 1
|
| 420 |
+
|
| 421 |
+
def get_pipeline_statistics(self) -> Dict[str, Any]:
|
| 422 |
+
"""Get comprehensive pipeline statistics"""
|
| 423 |
+
processing_times = self.stats["processing_times"]
|
| 424 |
+
|
| 425 |
+
return {
|
| 426 |
+
"total_documents_processed": self.stats["total_processed"],
|
| 427 |
+
"successful_processing_rate": self.stats["successful_processing"] / max(self.stats["total_processed"], 1),
|
| 428 |
+
"phi_deidentification_rate": self.stats["phi_deidentified"] / max(self.stats["total_processed"], 1),
|
| 429 |
+
"validation_pass_rate": self.stats["validation_passed"] / max(self.stats["total_processed"], 1),
|
| 430 |
+
"average_processing_time": sum(processing_times) / len(processing_times) if processing_times else 0,
|
| 431 |
+
"error_breakdown": self.stats["error_counts"],
|
| 432 |
+
"pipeline_health": "healthy" if self.stats["successful_processing"] > self.stats["total_processed"] * 0.9 else "degraded"
|
| 433 |
+
}
|
| 434 |
+
|
| 435 |
+
def batch_process(self, file_paths: List[str], document_types: Optional[List[str]] = None) -> List[ProcessingPipelineResult]:
|
| 436 |
+
"""Process multiple documents in batch"""
|
| 437 |
+
if document_types is None:
|
| 438 |
+
document_types = ["auto"] * len(file_paths)
|
| 439 |
+
|
| 440 |
+
results = []
|
| 441 |
+
|
| 442 |
+
for i, (file_path, doc_type) in enumerate(zip(file_paths, document_types)):
|
| 443 |
+
logger.info(f"Processing batch document {i+1}/{len(file_paths)}: {file_path}")
|
| 444 |
+
|
| 445 |
+
try:
|
| 446 |
+
result = self.process_document(file_path, doc_type)
|
| 447 |
+
results.append(result)
|
| 448 |
+
except Exception as e:
|
| 449 |
+
logger.error(f"Batch processing error for {file_path}: {str(e)}")
|
| 450 |
+
# Create error result
|
| 451 |
+
error_result = ProcessingPipelineResult(
|
| 452 |
+
document_id=self._generate_document_id(file_path),
|
| 453 |
+
file_detection=FileDetectionResult(
|
| 454 |
+
file_type=MedicalFileType.UNKNOWN,
|
| 455 |
+
confidence=0.0,
|
| 456 |
+
detected_features=["batch_error"],
|
| 457 |
+
mime_type="application/octet-stream",
|
| 458 |
+
file_size=0,
|
| 459 |
+
metadata={"error": str(e)},
|
| 460 |
+
recommended_extractor="error_handler"
|
| 461 |
+
),
|
| 462 |
+
deidentification_result=None,
|
| 463 |
+
extraction_result=None,
|
| 464 |
+
structured_data={"error": str(e), "batch_processing_failed": True},
|
| 465 |
+
validation_result=ValidationResult(is_valid=False, validation_errors=[str(e)]),
|
| 466 |
+
model_routing={"error": str(e)},
|
| 467 |
+
processing_time=0.0,
|
| 468 |
+
pipeline_metadata={"batch_position": i, "error": str(e)}
|
| 469 |
+
)
|
| 470 |
+
results.append(error_result)
|
| 471 |
+
|
| 472 |
+
logger.info(f"Batch processing completed: {len(results)} documents processed")
|
| 473 |
+
return results
|
| 474 |
+
|
| 475 |
+
def export_pipeline_result(self, result: ProcessingPipelineResult, output_path: str):
|
| 476 |
+
"""Export pipeline result to JSON file"""
|
| 477 |
+
try:
|
| 478 |
+
export_data = {
|
| 479 |
+
"document_id": result.document_id,
|
| 480 |
+
"file_detection": asdict(result.file_detection),
|
| 481 |
+
"deidentification_result": asdict(result.deidentification_result) if result.deidentification_result else None,
|
| 482 |
+
"extraction_result": self._serialize_extraction_result(result.extraction_result),
|
| 483 |
+
"structured_data": result.structured_data,
|
| 484 |
+
"validation_result": asdict(result.validation_result),
|
| 485 |
+
"model_routing": result.model_routing,
|
| 486 |
+
"processing_time": result.processing_time,
|
| 487 |
+
"pipeline_metadata": result.pipeline_metadata,
|
| 488 |
+
"export_timestamp": time.time()
|
| 489 |
+
}
|
| 490 |
+
|
| 491 |
+
with open(output_path, 'w') as f:
|
| 492 |
+
json.dump(export_data, f, indent=2, default=str)
|
| 493 |
+
|
| 494 |
+
logger.info(f"Pipeline result exported to: {output_path}")
|
| 495 |
+
|
| 496 |
+
except Exception as e:
|
| 497 |
+
logger.error(f"Export error: {str(e)}")
|
| 498 |
+
|
| 499 |
+
def _serialize_extraction_result(self, extraction_result: Any) -> Dict[str, Any]:
|
| 500 |
+
"""Serialize extraction result for JSON export"""
|
| 501 |
+
try:
|
| 502 |
+
if hasattr(extraction_result, '__dict__'):
|
| 503 |
+
return asdict(extraction_result)
|
| 504 |
+
else:
|
| 505 |
+
return {"data": extraction_result}
|
| 506 |
+
except:
|
| 507 |
+
return {"error": "Could not serialize extraction result"}
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
# Export main classes
|
| 511 |
+
__all__ = [
|
| 512 |
+
"MedicalPreprocessingPipeline",
|
| 513 |
+
"ProcessingPipelineResult"
|
| 514 |
+
]
|