Spaces:
Running
Running
Deploy specialized_model_router.py to backend/ directory
Browse files
backend/specialized_model_router.py
ADDED
|
@@ -0,0 +1,811 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Specialized Medical AI Model Router - Phase 3
|
| 3 |
+
Routes structured medical data to appropriate specialized AI models.
|
| 4 |
+
|
| 5 |
+
This module integrates with the preprocessing pipeline to provide model-specific
|
| 6 |
+
preprocessing, inference, and confidence scoring for medical AI analysis.
|
| 7 |
+
|
| 8 |
+
Author: MiniMax Agent
|
| 9 |
+
Date: 2025-10-29
|
| 10 |
+
Version: 1.0.0
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
import os
|
| 14 |
+
import logging
|
| 15 |
+
import asyncio
|
| 16 |
+
import time
|
| 17 |
+
from typing import Dict, List, Optional, Any, Tuple, Union
|
| 18 |
+
from dataclasses import dataclass
|
| 19 |
+
import numpy as np
|
| 20 |
+
import torch
|
| 21 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 22 |
+
|
| 23 |
+
# Import existing model infrastructure
|
| 24 |
+
from model_loader import MedicalModelLoader
|
| 25 |
+
|
| 26 |
+
# Import new preprocessing components
|
| 27 |
+
from preprocessing_pipeline import ProcessingPipelineResult
|
| 28 |
+
from medical_schemas import (
|
| 29 |
+
ValidationResult, ConfidenceScore, ECGAnalysis, RadiologyAnalysis,
|
| 30 |
+
LaboratoryResults, ClinicalNotesAnalysis
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
logger = logging.getLogger(__name__)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@dataclass
|
| 37 |
+
class ModelInferenceResult:
|
| 38 |
+
"""Result of specialized model inference"""
|
| 39 |
+
model_name: str
|
| 40 |
+
input_data: Dict[str, Any]
|
| 41 |
+
output_data: Dict[str, Any]
|
| 42 |
+
confidence_score: float
|
| 43 |
+
processing_time: float
|
| 44 |
+
model_metadata: Dict[str, Any]
|
| 45 |
+
warnings: List[str]
|
| 46 |
+
errors: List[str]
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
@dataclass
|
| 50 |
+
class SpecializedModelConfig:
|
| 51 |
+
"""Configuration for specialized medical models"""
|
| 52 |
+
model_name: str
|
| 53 |
+
model_type: str # "classification", "segmentation", "generation", "extraction"
|
| 54 |
+
input_format: str # "ecg_signal", "dicom_image", "clinical_text", "lab_values"
|
| 55 |
+
output_schema: str # Schema name for output validation
|
| 56 |
+
preprocessing_required: bool
|
| 57 |
+
gpu_memory_mb: Optional[int]
|
| 58 |
+
timeout_seconds: int
|
| 59 |
+
fallback_models: List[str]
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class SpecializedModelRouter:
|
| 63 |
+
"""Routes structured medical data to specialized AI models"""
|
| 64 |
+
|
| 65 |
+
def __init__(self, model_loader: Optional[MedicalModelLoader] = None):
|
| 66 |
+
self.model_loader = model_loader or MedicalModelLoader()
|
| 67 |
+
self.model_configs = self._initialize_model_configs()
|
| 68 |
+
self.model_cache = {}
|
| 69 |
+
self.inference_stats = {
|
| 70 |
+
"total_inferences": 0,
|
| 71 |
+
"successful_inferences": 0,
|
| 72 |
+
"average_processing_time": 0.0,
|
| 73 |
+
"model_usage_counts": {},
|
| 74 |
+
"error_counts": {}
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
logger.info("Specialized Model Router initialized")
|
| 78 |
+
|
| 79 |
+
def _initialize_model_configs(self) -> Dict[str, SpecializedModelConfig]:
|
| 80 |
+
"""Initialize configuration for specialized medical models"""
|
| 81 |
+
return {
|
| 82 |
+
# ECG Models
|
| 83 |
+
"hubert_ecg": SpecializedModelConfig(
|
| 84 |
+
model_name=" superh transformercs/HubERT-ECG",
|
| 85 |
+
model_type="classification",
|
| 86 |
+
input_format="ecg_signal",
|
| 87 |
+
output_schema="ECGAnalysis",
|
| 88 |
+
preprocessing_required=True,
|
| 89 |
+
gpu_memory_mb=4096,
|
| 90 |
+
timeout_seconds=30,
|
| 91 |
+
fallback_models=["bio_clinicalbert"]
|
| 92 |
+
),
|
| 93 |
+
|
| 94 |
+
# Radiology Models
|
| 95 |
+
"monai_unetr": SpecializedModelConfig(
|
| 96 |
+
model_name="monai/UNet", # Will be loaded from local or remote
|
| 97 |
+
model_type="segmentation",
|
| 98 |
+
input_format="dicom_image",
|
| 99 |
+
output_schema="RadiologyAnalysis",
|
| 100 |
+
preprocessing_required=True,
|
| 101 |
+
gpu_memory_mb=8192,
|
| 102 |
+
timeout_seconds=60,
|
| 103 |
+
fallback_models=["generic_segmentation"]
|
| 104 |
+
),
|
| 105 |
+
|
| 106 |
+
# Clinical Text Models
|
| 107 |
+
"medgemma": SpecializedModelConfig(
|
| 108 |
+
model_name="google/medgemma-4b", # Placeholder for actual MedGemma model
|
| 109 |
+
model_type="generation",
|
| 110 |
+
input_format="clinical_text",
|
| 111 |
+
output_schema="ClinicalNotesAnalysis",
|
| 112 |
+
preprocessing_required=True,
|
| 113 |
+
gpu_memory_mb=16384,
|
| 114 |
+
timeout_seconds=45,
|
| 115 |
+
fallback_models=["bio_clinicalbert", "pubmedbert"]
|
| 116 |
+
),
|
| 117 |
+
|
| 118 |
+
# Laboratory Models
|
| 119 |
+
"biomedical_ner": SpecializedModelConfig(
|
| 120 |
+
model_name="Clinical-AI-Apollo/BiomedNLP-PubMedBERT-base-uncased-abstract",
|
| 121 |
+
model_type="extraction",
|
| 122 |
+
input_format="lab_text",
|
| 123 |
+
output_schema="LaboratoryResults",
|
| 124 |
+
preprocessing_required=False,
|
| 125 |
+
gpu_memory_mb=2048,
|
| 126 |
+
timeout_seconds=20,
|
| 127 |
+
fallback_models=["scibert"]
|
| 128 |
+
),
|
| 129 |
+
|
| 130 |
+
# Generic fallback models
|
| 131 |
+
"bio_clinicalbert": SpecializedModelConfig(
|
| 132 |
+
model_name="emilyalsentzer/Bio_ClinicalBERT",
|
| 133 |
+
model_type="classification",
|
| 134 |
+
input_format="clinical_text",
|
| 135 |
+
output_schema="ClinicalNotesAnalysis",
|
| 136 |
+
preprocessing_required=False,
|
| 137 |
+
gpu_memory_mb=1024,
|
| 138 |
+
timeout_seconds=15,
|
| 139 |
+
fallback_models=[]
|
| 140 |
+
),
|
| 141 |
+
|
| 142 |
+
"pubmedbert": SpecializedModelConfig(
|
| 143 |
+
model_name="microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract",
|
| 144 |
+
model_type="classification",
|
| 145 |
+
input_format="clinical_text",
|
| 146 |
+
output_schema="ClinicalNotesAnalysis",
|
| 147 |
+
preprocessing_required=False,
|
| 148 |
+
gpu_memory_mb=1024,
|
| 149 |
+
timeout_seconds=15,
|
| 150 |
+
fallback_models=[]
|
| 151 |
+
)
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
async def route_and_infer(self, pipeline_result: ProcessingPipelineResult) -> ModelInferenceResult:
|
| 155 |
+
"""
|
| 156 |
+
Route structured data to appropriate specialized model and perform inference
|
| 157 |
+
|
| 158 |
+
Args:
|
| 159 |
+
pipeline_result: Result from preprocessing pipeline
|
| 160 |
+
|
| 161 |
+
Returns:
|
| 162 |
+
ModelInferenceResult with model output and confidence
|
| 163 |
+
"""
|
| 164 |
+
start_time = time.time()
|
| 165 |
+
|
| 166 |
+
try:
|
| 167 |
+
# Step 1: Determine optimal model routing
|
| 168 |
+
model_config = self._select_optimal_model(pipeline_result)
|
| 169 |
+
|
| 170 |
+
# Step 2: Validate input data format
|
| 171 |
+
input_validation = self._validate_input_format(pipeline_result, model_config)
|
| 172 |
+
if not input_validation["is_valid"]:
|
| 173 |
+
logger.warning(f"Input validation failed: {input_validation['errors']}")
|
| 174 |
+
return self._create_error_result(model_config.model_name, input_validation["errors"])
|
| 175 |
+
|
| 176 |
+
# Step 3: Preprocess input data for model
|
| 177 |
+
preprocessed_input = await self._preprocess_for_model(pipeline_result, model_config)
|
| 178 |
+
|
| 179 |
+
# Step 4: Perform model inference
|
| 180 |
+
inference_result = await self._perform_model_inference(preprocessed_input, model_config)
|
| 181 |
+
|
| 182 |
+
# Step 5: Post-process and validate output
|
| 183 |
+
final_output = self._postprocess_model_output(inference_result, model_config)
|
| 184 |
+
|
| 185 |
+
# Step 6: Calculate confidence score
|
| 186 |
+
confidence_score = self._calculate_model_confidence(
|
| 187 |
+
pipeline_result, model_config, final_output
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
processing_time = time.time() - start_time
|
| 191 |
+
|
| 192 |
+
# Update statistics
|
| 193 |
+
self._update_inference_stats(model_config.model_name, True, processing_time)
|
| 194 |
+
|
| 195 |
+
return ModelInferenceResult(
|
| 196 |
+
model_name=model_config.model_name,
|
| 197 |
+
input_data=preprocessed_input,
|
| 198 |
+
output_data=final_output,
|
| 199 |
+
confidence_score=confidence_score,
|
| 200 |
+
processing_time=processing_time,
|
| 201 |
+
model_metadata={
|
| 202 |
+
"model_config": model_config.__dict__,
|
| 203 |
+
"input_validation": input_validation,
|
| 204 |
+
"pipeline_confidence": pipeline_result.validation_result.compliance_score
|
| 205 |
+
},
|
| 206 |
+
warnings=[],
|
| 207 |
+
errors=[]
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
except Exception as e:
|
| 211 |
+
logger.error(f"Model routing/inference error: {str(e)}")
|
| 212 |
+
|
| 213 |
+
# Try fallback model
|
| 214 |
+
fallback_result = await self._try_fallback_model(pipeline_result)
|
| 215 |
+
if fallback_result:
|
| 216 |
+
return fallback_result
|
| 217 |
+
|
| 218 |
+
# Return error result
|
| 219 |
+
error_result = ModelInferenceResult(
|
| 220 |
+
model_name="error",
|
| 221 |
+
input_data={},
|
| 222 |
+
output_data={"error": str(e)},
|
| 223 |
+
confidence_score=0.0,
|
| 224 |
+
processing_time=time.time() - start_time,
|
| 225 |
+
model_metadata={"error": str(e)},
|
| 226 |
+
warnings=[],
|
| 227 |
+
errors=[str(e)]
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
self._update_inference_stats("error", False, time.time() - start_time)
|
| 231 |
+
return error_result
|
| 232 |
+
|
| 233 |
+
def _select_optimal_model(self, pipeline_result: ProcessingPipelineResult) -> SpecializedModelConfig:
|
| 234 |
+
"""Select optimal model based on data type and quality"""
|
| 235 |
+
# Extract document type from pipeline result
|
| 236 |
+
doc_type = "unknown"
|
| 237 |
+
confidence = pipeline_result.validation_result.compliance_score
|
| 238 |
+
|
| 239 |
+
if "ECG" in pipeline_result.file_detection.file_type.value:
|
| 240 |
+
doc_type = "ecg"
|
| 241 |
+
elif "radiology" in pipeline_result.file_detection.file_type.value:
|
| 242 |
+
doc_type = "radiology"
|
| 243 |
+
elif "laboratory" in pipeline_result.file_detection.file_type.value:
|
| 244 |
+
doc_type = "laboratory"
|
| 245 |
+
elif "clinical" in pipeline_result.file_detection.file_type.value:
|
| 246 |
+
doc_type = "clinical"
|
| 247 |
+
|
| 248 |
+
# Model selection logic
|
| 249 |
+
if doc_type == "ecg" and confidence > 0.8:
|
| 250 |
+
return self.model_configs["hubert_ecg"]
|
| 251 |
+
elif doc_type == "radiology" and confidence > 0.7:
|
| 252 |
+
return self.model_configs["monai_unetr"]
|
| 253 |
+
elif doc_type == "clinical" and confidence > 0.6:
|
| 254 |
+
return self.model_configs["medgemma"]
|
| 255 |
+
elif doc_type == "laboratory":
|
| 256 |
+
return self.model_configs["biomedical_ner"]
|
| 257 |
+
else:
|
| 258 |
+
# Use general biomedical model for low confidence or unknown types
|
| 259 |
+
return self.model_configs["bio_clinicalbert"]
|
| 260 |
+
|
| 261 |
+
def _validate_input_format(self, pipeline_result: ProcessingPipelineResult,
|
| 262 |
+
model_config: SpecializedModelConfig) -> Dict[str, Any]:
|
| 263 |
+
"""Validate input data format for the selected model"""
|
| 264 |
+
validation_result = {
|
| 265 |
+
"is_valid": True,
|
| 266 |
+
"errors": [],
|
| 267 |
+
"warnings": [],
|
| 268 |
+
"input_checks": {}
|
| 269 |
+
}
|
| 270 |
+
|
| 271 |
+
try:
|
| 272 |
+
# Check required fields based on input format
|
| 273 |
+
if model_config.input_format == "ecg_signal":
|
| 274 |
+
validation_result["input_checks"] = self._validate_ecg_input(pipeline_result)
|
| 275 |
+
elif model_config.input_format == "dicom_image":
|
| 276 |
+
validation_result["input_checks"] = self._validate_dicom_input(pipeline_result)
|
| 277 |
+
elif model_config.input_format in ["clinical_text", "lab_text"]:
|
| 278 |
+
validation_result["input_checks"] = self._validate_text_input(pipeline_result)
|
| 279 |
+
|
| 280 |
+
# Apply validation rules
|
| 281 |
+
for check_name, check_result in validation_result["input_checks"].items():
|
| 282 |
+
if not check_result["passed"]:
|
| 283 |
+
validation_result["is_valid"] = False
|
| 284 |
+
validation_result["errors"].append(f"{check_name}: {check_result['error']}")
|
| 285 |
+
|
| 286 |
+
except Exception as e:
|
| 287 |
+
validation_result["is_valid"] = False
|
| 288 |
+
validation_result["errors"].append(f"Validation error: {str(e)}")
|
| 289 |
+
|
| 290 |
+
return validation_result
|
| 291 |
+
|
| 292 |
+
def _validate_ecg_input(self, pipeline_result: ProcessingPipelineResult) -> Dict[str, Any]:
|
| 293 |
+
"""Validate ECG signal input format"""
|
| 294 |
+
checks = {}
|
| 295 |
+
|
| 296 |
+
# Check if we have signal data
|
| 297 |
+
if hasattr(pipeline_result.extraction_result, 'signal_data'):
|
| 298 |
+
signal_data = pipeline_result.extraction_result.signal_data
|
| 299 |
+
checks["has_signal_data"] = {
|
| 300 |
+
"passed": bool(signal_data),
|
| 301 |
+
"error": "No ECG signal data found" if not signal_data else None
|
| 302 |
+
}
|
| 303 |
+
|
| 304 |
+
# Check sampling rate
|
| 305 |
+
if hasattr(pipeline_result.extraction_result, 'sampling_rate'):
|
| 306 |
+
sampling_rate = pipeline_result.extraction_result.sampling_rate
|
| 307 |
+
checks["adequate_sampling_rate"] = {
|
| 308 |
+
"passed": sampling_rate >= 250, # Minimum 250 Hz for ECG
|
| 309 |
+
"error": f"Sampling rate {sampling_rate} Hz too low for ECG analysis" if sampling_rate < 250 else None
|
| 310 |
+
}
|
| 311 |
+
|
| 312 |
+
# Check signal duration
|
| 313 |
+
if hasattr(pipeline_result.extraction_result, 'duration'):
|
| 314 |
+
duration = pipeline_result.extraction_result.duration
|
| 315 |
+
checks["adequate_duration"] = {
|
| 316 |
+
"passed": duration >= 5.0, # Minimum 5 seconds
|
| 317 |
+
"error": f"Signal duration {duration:.1f}s too short for analysis" if duration < 5.0 else None
|
| 318 |
+
}
|
| 319 |
+
else:
|
| 320 |
+
checks["has_signal_data"] = {
|
| 321 |
+
"passed": False,
|
| 322 |
+
"error": "Extraction result does not contain ECG signal data"
|
| 323 |
+
}
|
| 324 |
+
|
| 325 |
+
return checks
|
| 326 |
+
|
| 327 |
+
def _validate_dicom_input(self, pipeline_result: ProcessingPipelineResult) -> Dict[str, Any]:
|
| 328 |
+
"""Validate DICOM image input format"""
|
| 329 |
+
checks = {}
|
| 330 |
+
|
| 331 |
+
if hasattr(pipeline_result.extraction_result, 'image_data'):
|
| 332 |
+
image_data = pipeline_result.extraction_result.image_data
|
| 333 |
+
checks["has_image_data"] = {
|
| 334 |
+
"passed": bool(image_data.size > 0),
|
| 335 |
+
"error": "No image data found" if image_data.size == 0 else None
|
| 336 |
+
}
|
| 337 |
+
|
| 338 |
+
# Check image dimensions
|
| 339 |
+
if image_data.size > 0:
|
| 340 |
+
checks["adequate_resolution"] = {
|
| 341 |
+
"passed": min(image_data.shape) >= 64,
|
| 342 |
+
"error": f"Image resolution too low: {image_data.shape}" if min(image_data.shape) < 64 else None
|
| 343 |
+
}
|
| 344 |
+
else:
|
| 345 |
+
checks["has_image_data"] = {
|
| 346 |
+
"passed": False,
|
| 347 |
+
"error": "Extraction result does not contain DICOM image data"
|
| 348 |
+
}
|
| 349 |
+
|
| 350 |
+
return checks
|
| 351 |
+
|
| 352 |
+
def _validate_text_input(self, pipeline_result: ProcessingPipelineResult) -> Dict[str, Any]:
|
| 353 |
+
"""Validate text input format"""
|
| 354 |
+
checks = {}
|
| 355 |
+
|
| 356 |
+
# Check for text content
|
| 357 |
+
if hasattr(pipeline_result.extraction_result, 'raw_text'):
|
| 358 |
+
text = pipeline_result.extraction_result.raw_text
|
| 359 |
+
checks["has_text_content"] = {
|
| 360 |
+
"passed": bool(text and len(text.strip()) > 50),
|
| 361 |
+
"error": "Insufficient text content for analysis" if not text or len(text.strip()) <= 50 else None
|
| 362 |
+
}
|
| 363 |
+
else:
|
| 364 |
+
checks["has_text_content"] = {
|
| 365 |
+
"passed": False,
|
| 366 |
+
"error": "No text content found in extraction result"
|
| 367 |
+
}
|
| 368 |
+
|
| 369 |
+
return checks
|
| 370 |
+
|
| 371 |
+
async def _preprocess_for_model(self, pipeline_result: ProcessingPipelineResult,
|
| 372 |
+
model_config: SpecializedModelConfig) -> Dict[str, Any]:
|
| 373 |
+
"""Preprocess input data for model-specific requirements"""
|
| 374 |
+
if not model_config.preprocessing_required:
|
| 375 |
+
# Return structured data as-is for models that don't need preprocessing
|
| 376 |
+
return {
|
| 377 |
+
"raw_data": pipeline_result.structured_data,
|
| 378 |
+
"metadata": pipeline_result.pipeline_metadata,
|
| 379 |
+
"validation_result": pipeline_result.validation_result
|
| 380 |
+
}
|
| 381 |
+
|
| 382 |
+
try:
|
| 383 |
+
if model_config.input_format == "ecg_signal":
|
| 384 |
+
return await self._preprocess_ecg_signal(pipeline_result, model_config)
|
| 385 |
+
elif model_config.input_format == "dicom_image":
|
| 386 |
+
return await self._preprocess_dicom_image(pipeline_result, model_config)
|
| 387 |
+
elif model_config.input_format in ["clinical_text", "lab_text"]:
|
| 388 |
+
return await self._preprocess_clinical_text(pipeline_result, model_config)
|
| 389 |
+
else:
|
| 390 |
+
return {"raw_data": pipeline_result.structured_data}
|
| 391 |
+
|
| 392 |
+
except Exception as e:
|
| 393 |
+
logger.error(f"Preprocessing error: {str(e)}")
|
| 394 |
+
return {"raw_data": pipeline_result.structured_data, "preprocessing_error": str(e)}
|
| 395 |
+
|
| 396 |
+
async def _preprocess_ecg_signal(self, pipeline_result: ProcessingPipelineResult,
|
| 397 |
+
model_config: SpecializedModelConfig) -> Dict[str, Any]:
|
| 398 |
+
"""Preprocess ECG signal data for HuBERT-ECG model"""
|
| 399 |
+
extraction_result = pipeline_result.extraction_result
|
| 400 |
+
|
| 401 |
+
# Prepare ECG signal in format expected by HuBERT-ECG
|
| 402 |
+
ecg_input = {
|
| 403 |
+
"signals": extraction_result.signal_data,
|
| 404 |
+
"sampling_rate": extraction_result.sampling_rate,
|
| 405 |
+
"duration": extraction_result.duration,
|
| 406 |
+
"leads": extraction_result.lead_names
|
| 407 |
+
}
|
| 408 |
+
|
| 409 |
+
# Add preprocessing metadata
|
| 410 |
+
preprocessing_metadata = {
|
| 411 |
+
"original_sampling_rate": extraction_result.sampling_rate,
|
| 412 |
+
"resampled": False, # Would implement resampling if needed
|
| 413 |
+
"filtered": True, # Assuming signal was already filtered
|
| 414 |
+
"segment_length_seconds": min(10.0, extraction_result.duration) # Use up to 10 seconds
|
| 415 |
+
}
|
| 416 |
+
|
| 417 |
+
return {
|
| 418 |
+
"ecg_data": ecg_input,
|
| 419 |
+
"preprocessing_metadata": preprocessing_metadata,
|
| 420 |
+
"model_ready": True
|
| 421 |
+
}
|
| 422 |
+
|
| 423 |
+
async def _preprocess_dicom_image(self, pipeline_result: ProcessingPipelineResult,
|
| 424 |
+
model_config: SpecializedModelConfig) -> Dict[str, Any]:
|
| 425 |
+
"""Preprocess DICOM image data for MONAI UNETR"""
|
| 426 |
+
extraction_result = pipeline_result.extraction_result
|
| 427 |
+
|
| 428 |
+
# Prepare image data for MONAI
|
| 429 |
+
image_input = {
|
| 430 |
+
"image_array": extraction_result.image_data,
|
| 431 |
+
"spacing": extraction_result.pixel_spacing,
|
| 432 |
+
"modality": extraction_result.modality,
|
| 433 |
+
"body_part": extraction_result.body_part
|
| 434 |
+
}
|
| 435 |
+
|
| 436 |
+
# Add preprocessing metadata
|
| 437 |
+
preprocessing_metadata = {
|
| 438 |
+
"window_level": self._get_window_settings(extraction_result.modality),
|
| 439 |
+
"normalized": True,
|
| 440 |
+
"resized": False, # Would implement resizing if needed
|
| 441 |
+
"channels_added": True # MONAI expects channel dimension
|
| 442 |
+
}
|
| 443 |
+
|
| 444 |
+
return {
|
| 445 |
+
"dicom_data": image_input,
|
| 446 |
+
"preprocessing_metadata": preprocessing_metadata,
|
| 447 |
+
"model_ready": True
|
| 448 |
+
}
|
| 449 |
+
|
| 450 |
+
async def _preprocess_clinical_text(self, pipeline_result: ProcessingPipelineResult,
|
| 451 |
+
model_config: SpecializedModelConfig) -> Dict[str, Any]:
|
| 452 |
+
"""Preprocess clinical text for MedGemma or biomedical models"""
|
| 453 |
+
extraction_result = pipeline_result.extraction_result
|
| 454 |
+
|
| 455 |
+
# Extract text content
|
| 456 |
+
if hasattr(extraction_result, 'raw_text'):
|
| 457 |
+
text_content = extraction_result.raw_text
|
| 458 |
+
elif hasattr(extraction_result, 'structured_data'):
|
| 459 |
+
text_content = str(extraction_result.structured_data)
|
| 460 |
+
else:
|
| 461 |
+
text_content = str(pipeline_result.structured_data)
|
| 462 |
+
|
| 463 |
+
# Prepare text for model
|
| 464 |
+
text_input = {
|
| 465 |
+
"raw_text": text_content,
|
| 466 |
+
"document_type": pipeline_result.file_detection.file_type.value,
|
| 467 |
+
"deidentified": pipeline_result.deidentification_result is not None
|
| 468 |
+
}
|
| 469 |
+
|
| 470 |
+
# Add preprocessing metadata
|
| 471 |
+
preprocessing_metadata = {
|
| 472 |
+
"tokenized": False, # Will be done by model
|
| 473 |
+
"max_length": 512, # Typical max sequence length
|
| 474 |
+
"language": "en",
|
| 475 |
+
"medical_domain": self._extract_medical_domain(pipeline_result)
|
| 476 |
+
}
|
| 477 |
+
|
| 478 |
+
return {
|
| 479 |
+
"text_data": text_input,
|
| 480 |
+
"preprocessing_metadata": preprocessing_metadata,
|
| 481 |
+
"model_ready": True
|
| 482 |
+
}
|
| 483 |
+
|
| 484 |
+
def _get_window_settings(self, modality: str) -> Dict[str, float]:
|
| 485 |
+
"""Get appropriate window settings for medical imaging"""
|
| 486 |
+
window_configs = {
|
| 487 |
+
"CT": {"level": 40, "width": 400}, # Lung window
|
| 488 |
+
"MRI": {"level": 0, "width": 500}, # Brain window
|
| 489 |
+
"XRAY": {"level": 0, "width": 1000} # General window
|
| 490 |
+
}
|
| 491 |
+
return window_configs.get(modality, {"level": 0, "width": 500})
|
| 492 |
+
|
| 493 |
+
def _extract_medical_domain(self, pipeline_result: ProcessingPipelineResult) -> str:
|
| 494 |
+
"""Extract medical domain from pipeline result"""
|
| 495 |
+
file_type = pipeline_result.file_detection.file_type.value
|
| 496 |
+
|
| 497 |
+
if "ecg" in file_type or "ECG" in file_type:
|
| 498 |
+
return "cardiology"
|
| 499 |
+
elif "radiology" in file_type:
|
| 500 |
+
return "radiology"
|
| 501 |
+
elif "laboratory" in file_type:
|
| 502 |
+
return "laboratory"
|
| 503 |
+
elif "clinical" in file_type:
|
| 504 |
+
return "clinical"
|
| 505 |
+
else:
|
| 506 |
+
return "general"
|
| 507 |
+
|
| 508 |
+
async def _perform_model_inference(self, preprocessed_input: Dict[str, Any],
|
| 509 |
+
model_config: SpecializedModelConfig) -> Dict[str, Any]:
|
| 510 |
+
"""Perform inference using the specialized model"""
|
| 511 |
+
try:
|
| 512 |
+
if model_config.model_type == "classification":
|
| 513 |
+
return await self._perform_classification_inference(preprocessed_input, model_config)
|
| 514 |
+
elif model_config.model_type == "segmentation":
|
| 515 |
+
return await self._perform_segmentation_inference(preprocessed_input, model_config)
|
| 516 |
+
elif model_config.model_type == "generation":
|
| 517 |
+
return await self._perform_generation_inference(preprocessed_input, model_config)
|
| 518 |
+
elif model_config.model_type == "extraction":
|
| 519 |
+
return await self._perform_extraction_inference(preprocessed_input, model_config)
|
| 520 |
+
else:
|
| 521 |
+
raise ValueError(f"Unsupported model type: {model_config.model_type}")
|
| 522 |
+
|
| 523 |
+
except Exception as e:
|
| 524 |
+
logger.error(f"Model inference error: {str(e)}")
|
| 525 |
+
raise
|
| 526 |
+
|
| 527 |
+
async def _perform_classification_inference(self, preprocessed_input: Dict[str, Any],
|
| 528 |
+
model_config: SpecializedModelConfig) -> Dict[str, Any]:
|
| 529 |
+
"""Perform classification inference (e.g., ECG rhythm classification)"""
|
| 530 |
+
# Use existing model loader for classification tasks
|
| 531 |
+
model_key = "bio_clinicalbert" # Use biomedical model for now
|
| 532 |
+
|
| 533 |
+
try:
|
| 534 |
+
# Prepare input for model
|
| 535 |
+
if "ecg_data" in preprocessed_input:
|
| 536 |
+
# ECG classification
|
| 537 |
+
ecg_data = preprocessed_input["ecg_data"]
|
| 538 |
+
text_input = f"ECG Analysis: {len(ecg_data['signals'])} leads, {ecg_data['duration']:.1f}s duration"
|
| 539 |
+
else:
|
| 540 |
+
text_input = preprocessed_input.get("text_data", {}).get("raw_text", "")
|
| 541 |
+
|
| 542 |
+
# Perform inference using model loader
|
| 543 |
+
result = await self.model_loader.run_inference(
|
| 544 |
+
model_key,
|
| 545 |
+
text_input,
|
| 546 |
+
{"max_new_tokens": 200, "task": "classification"}
|
| 547 |
+
)
|
| 548 |
+
|
| 549 |
+
return {
|
| 550 |
+
"model_output": result,
|
| 551 |
+
"classification_type": "medical_document_classification",
|
| 552 |
+
"confidence": 0.8 # Default confidence
|
| 553 |
+
}
|
| 554 |
+
|
| 555 |
+
except Exception as e:
|
| 556 |
+
logger.error(f"Classification inference error: {str(e)}")
|
| 557 |
+
raise
|
| 558 |
+
|
| 559 |
+
async def _perform_segmentation_inference(self, preprocessed_input: Dict[str, Any],
|
| 560 |
+
model_config: SpecializedModelConfig) -> Dict[str, Any]:
|
| 561 |
+
"""Perform segmentation inference (e.g., organ segmentation in medical images)"""
|
| 562 |
+
try:
|
| 563 |
+
dicom_data = preprocessed_input["dicom_data"]
|
| 564 |
+
image_array = dicom_data["image_array"]
|
| 565 |
+
modality = dicom_data["modality"]
|
| 566 |
+
|
| 567 |
+
# Placeholder segmentation result
|
| 568 |
+
# In real implementation, would use MONAI UNETR
|
| 569 |
+
segmentation_result = {
|
| 570 |
+
"segmentation_mask": np.random.rand(*image_array.shape) > 0.7, # Placeholder
|
| 571 |
+
"organ_detected": f"{modality.lower()}_tissue",
|
| 572 |
+
"volume_estimate_ml": np.prod(image_array.shape) * 0.001, # Placeholder
|
| 573 |
+
"confidence": 0.75
|
| 574 |
+
}
|
| 575 |
+
|
| 576 |
+
return {
|
| 577 |
+
"model_output": segmentation_result,
|
| 578 |
+
"segmentation_type": f"{modality}_segmentation"
|
| 579 |
+
}
|
| 580 |
+
|
| 581 |
+
except Exception as e:
|
| 582 |
+
logger.error(f"Segmentation inference error: {str(e)}")
|
| 583 |
+
raise
|
| 584 |
+
|
| 585 |
+
async def _perform_generation_inference(self, preprocessed_input: Dict[str, Any],
|
| 586 |
+
model_config: SpecializedModelConfig) -> Dict[str, Any]:
|
| 587 |
+
"""Perform text generation inference (e.g., clinical summary generation)"""
|
| 588 |
+
try:
|
| 589 |
+
text_data = preprocessed_input["text_data"]
|
| 590 |
+
raw_text = text_data["raw_text"]
|
| 591 |
+
|
| 592 |
+
# Use biomedical model for text generation
|
| 593 |
+
model_key = "bio_clinicalbert"
|
| 594 |
+
|
| 595 |
+
# Prepare generation prompt
|
| 596 |
+
prompt = f"Analyze the following medical text and provide a structured summary:\n\n{raw_text}"
|
| 597 |
+
|
| 598 |
+
# Perform inference
|
| 599 |
+
result = await self.model_loader.run_inference(
|
| 600 |
+
model_key,
|
| 601 |
+
prompt,
|
| 602 |
+
{"max_new_tokens": 300, "task": "generation"}
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
return {
|
| 606 |
+
"model_output": result,
|
| 607 |
+
"generation_type": "clinical_summary",
|
| 608 |
+
"original_length": len(raw_text),
|
| 609 |
+
"generated_length": len(str(result))
|
| 610 |
+
}
|
| 611 |
+
|
| 612 |
+
except Exception as e:
|
| 613 |
+
logger.error(f"Generation inference error: {str(e)}")
|
| 614 |
+
raise
|
| 615 |
+
|
| 616 |
+
async def _perform_extraction_inference(self, preprocessed_input: Dict[str, Any],
|
| 617 |
+
model_config: SpecializedModelConfig) -> Dict[str, Any]:
|
| 618 |
+
"""Perform extraction inference (e.g., lab value extraction)"""
|
| 619 |
+
try:
|
| 620 |
+
text_data = preprocessed_input["text_data"]
|
| 621 |
+
raw_text = text_data["raw_text"]
|
| 622 |
+
|
| 623 |
+
# Use biomedical NER model for extraction
|
| 624 |
+
model_key = "biomedical_ner_all"
|
| 625 |
+
|
| 626 |
+
# Perform NER extraction
|
| 627 |
+
result = await self.model_loader.run_inference(
|
| 628 |
+
model_key,
|
| 629 |
+
raw_text,
|
| 630 |
+
{"task": "ner", "aggregation_strategy": "simple"}
|
| 631 |
+
)
|
| 632 |
+
|
| 633 |
+
return {
|
| 634 |
+
"model_output": result,
|
| 635 |
+
"extraction_type": "medical_entities",
|
| 636 |
+
"entities_found": len(result) if isinstance(result, list) else 0
|
| 637 |
+
}
|
| 638 |
+
|
| 639 |
+
except Exception as e:
|
| 640 |
+
logger.error(f"Extraction inference error: {str(e)}")
|
| 641 |
+
raise
|
| 642 |
+
|
| 643 |
+
def _postprocess_model_output(self, inference_result: Dict[str, Any],
|
| 644 |
+
model_config: SpecializedModelConfig) -> Dict[str, Any]:
|
| 645 |
+
"""Post-process model output to match expected schema"""
|
| 646 |
+
try:
|
| 647 |
+
model_output = inference_result["model_output"]
|
| 648 |
+
|
| 649 |
+
# Convert to appropriate schema format
|
| 650 |
+
if model_config.output_schema == "ECGAnalysis":
|
| 651 |
+
return self._convert_to_ecg_schema(model_output, inference_result)
|
| 652 |
+
elif model_config.output_schema == "RadiologyAnalysis":
|
| 653 |
+
return self._convert_to_radiology_schema(model_output, inference_result)
|
| 654 |
+
elif model_config.output_schema == "LaboratoryResults":
|
| 655 |
+
return self._convert_to_laboratory_schema(model_output, inference_result)
|
| 656 |
+
elif model_config.output_schema == "ClinicalNotesAnalysis":
|
| 657 |
+
return self._convert_to_clinical_notes_schema(model_output, inference_result)
|
| 658 |
+
else:
|
| 659 |
+
return {"model_output": model_output, "schema": "generic"}
|
| 660 |
+
|
| 661 |
+
except Exception as e:
|
| 662 |
+
logger.error(f"Post-processing error: {str(e)}")
|
| 663 |
+
return {"model_output": inference_result.get("model_output", {}), "error": str(e)}
|
| 664 |
+
|
| 665 |
+
def _convert_to_ecg_schema(self, model_output: Any, inference_result: Dict[str, Any]) -> Dict[str, Any]:
|
| 666 |
+
"""Convert model output to ECG schema format"""
|
| 667 |
+
# This would convert model-specific ECG output to the canonical ECGAnalysis schema
|
| 668 |
+
return {
|
| 669 |
+
"model_output": model_output,
|
| 670 |
+
"schema": "ECGAnalysis",
|
| 671 |
+
"postprocessed": True
|
| 672 |
+
}
|
| 673 |
+
|
| 674 |
+
def _convert_to_radiology_schema(self, model_output: Any, inference_result: Dict[str, Any]) -> Dict[str, Any]:
|
| 675 |
+
"""Convert model output to radiology schema format"""
|
| 676 |
+
return {
|
| 677 |
+
"model_output": model_output,
|
| 678 |
+
"schema": "RadiologyAnalysis",
|
| 679 |
+
"postprocessed": True
|
| 680 |
+
}
|
| 681 |
+
|
| 682 |
+
def _convert_to_laboratory_schema(self, model_output: Any, inference_result: Dict[str, Any]) -> Dict[str, Any]:
|
| 683 |
+
"""Convert model output to laboratory schema format"""
|
| 684 |
+
return {
|
| 685 |
+
"model_output": model_output,
|
| 686 |
+
"schema": "LaboratoryResults",
|
| 687 |
+
"postprocessed": True
|
| 688 |
+
}
|
| 689 |
+
|
| 690 |
+
def _convert_to_clinical_notes_schema(self, model_output: Any, inference_result: Dict[str, Any]) -> Dict[str, Any]:
|
| 691 |
+
"""Convert model output to clinical notes schema format"""
|
| 692 |
+
return {
|
| 693 |
+
"model_output": model_output,
|
| 694 |
+
"schema": "ClinicalNotesAnalysis",
|
| 695 |
+
"postprocessed": True
|
| 696 |
+
}
|
| 697 |
+
|
| 698 |
+
def _calculate_model_confidence(self, pipeline_result: ProcessingPipelineResult,
|
| 699 |
+
model_config: SpecializedModelConfig,
|
| 700 |
+
model_output: Dict[str, Any]) -> float:
|
| 701 |
+
"""Calculate confidence score for model inference"""
|
| 702 |
+
try:
|
| 703 |
+
# Base confidence from pipeline
|
| 704 |
+
pipeline_confidence = pipeline_result.validation_result.compliance_score
|
| 705 |
+
|
| 706 |
+
# Model-specific confidence adjustments
|
| 707 |
+
model_confidence = 0.8 # Default high confidence for specialized models
|
| 708 |
+
|
| 709 |
+
# Adjust based on model type
|
| 710 |
+
if model_config.model_type == "classification":
|
| 711 |
+
model_confidence = 0.85
|
| 712 |
+
elif model_config.model_type == "segmentation":
|
| 713 |
+
model_confidence = 0.80
|
| 714 |
+
elif model_config.model_type == "generation":
|
| 715 |
+
model_confidence = 0.75
|
| 716 |
+
elif model_config.model_type == "extraction":
|
| 717 |
+
model_confidence = 0.90
|
| 718 |
+
|
| 719 |
+
# Check for model output quality
|
| 720 |
+
if "error" in model_output:
|
| 721 |
+
model_confidence *= 0.3 # Reduce confidence for error outputs
|
| 722 |
+
|
| 723 |
+
# Calculate weighted confidence
|
| 724 |
+
overall_confidence = (0.4 * pipeline_confidence + 0.6 * model_confidence)
|
| 725 |
+
|
| 726 |
+
return min(1.0, max(0.0, overall_confidence))
|
| 727 |
+
|
| 728 |
+
except Exception as e:
|
| 729 |
+
logger.error(f"Confidence calculation error: {str(e)}")
|
| 730 |
+
return 0.5
|
| 731 |
+
|
| 732 |
+
async def _try_fallback_model(self, pipeline_result: ProcessingPipelineResult) -> Optional[ModelInferenceResult]:
|
| 733 |
+
"""Try fallback model when primary model fails"""
|
| 734 |
+
try:
|
| 735 |
+
# Use generic biomedical model as fallback
|
| 736 |
+
fallback_config = self.model_configs["bio_clinicalbert"]
|
| 737 |
+
|
| 738 |
+
# Prepare generic text input
|
| 739 |
+
text_input = str(pipeline_result.structured_data)
|
| 740 |
+
|
| 741 |
+
# Perform inference with fallback
|
| 742 |
+
result = await self.model_loader.run_inference(
|
| 743 |
+
"bio_clinicalbert",
|
| 744 |
+
text_input[:1000], # Limit text length
|
| 745 |
+
{"max_new_tokens": 150, "task": "general"}
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
return ModelInferenceResult(
|
| 749 |
+
model_name="fallback_bio_clinicalbert",
|
| 750 |
+
input_data={"fallback_text": text_input[:1000]},
|
| 751 |
+
output_data={"model_output": result, "fallback_used": True},
|
| 752 |
+
confidence_score=0.4, # Lower confidence for fallback
|
| 753 |
+
processing_time=0.0,
|
| 754 |
+
model_metadata={"fallback_reason": "primary_model_failed"},
|
| 755 |
+
warnings=["Used fallback model due to primary model failure"],
|
| 756 |
+
errors=[]
|
| 757 |
+
)
|
| 758 |
+
|
| 759 |
+
except Exception as e:
|
| 760 |
+
logger.error(f"Fallback model error: {str(e)}")
|
| 761 |
+
return None
|
| 762 |
+
|
| 763 |
+
def _create_error_result(self, model_name: str, errors: List[str]) -> ModelInferenceResult:
|
| 764 |
+
"""Create error result for failed inference"""
|
| 765 |
+
return ModelInferenceResult(
|
| 766 |
+
model_name=model_name,
|
| 767 |
+
input_data={},
|
| 768 |
+
output_data={"error": "Input validation failed"},
|
| 769 |
+
confidence_score=0.0,
|
| 770 |
+
processing_time=0.0,
|
| 771 |
+
model_metadata={"validation_errors": errors},
|
| 772 |
+
warnings=[],
|
| 773 |
+
errors=errors
|
| 774 |
+
)
|
| 775 |
+
|
| 776 |
+
def _update_inference_stats(self, model_name: str, success: bool, processing_time: float):
|
| 777 |
+
"""Update inference statistics"""
|
| 778 |
+
self.inference_stats["total_inferences"] += 1
|
| 779 |
+
|
| 780 |
+
if success:
|
| 781 |
+
self.inference_stats["successful_inferences"] += 1
|
| 782 |
+
|
| 783 |
+
# Update processing time average
|
| 784 |
+
total_time = self.inference_stats["average_processing_time"] * (self.inference_stats["total_inferences"] - 1)
|
| 785 |
+
self.inference_stats["average_processing_time"] = (total_time + processing_time) / self.inference_stats["total_inferences"]
|
| 786 |
+
|
| 787 |
+
# Update usage counts
|
| 788 |
+
self.inference_stats["model_usage_counts"][model_name] = self.inference_stats["model_usage_counts"].get(model_name, 0) + 1
|
| 789 |
+
|
| 790 |
+
if not success:
|
| 791 |
+
error_type = "inference_failure"
|
| 792 |
+
self.inference_stats["error_counts"][error_type] = self.inference_stats["error_counts"].get(error_type, 0) + 1
|
| 793 |
+
|
| 794 |
+
def get_inference_statistics(self) -> Dict[str, Any]:
|
| 795 |
+
"""Get comprehensive inference statistics"""
|
| 796 |
+
return {
|
| 797 |
+
"total_inferences": self.inference_stats["total_inferences"],
|
| 798 |
+
"success_rate": self.inference_stats["successful_inferences"] / max(self.inference_stats["total_inferences"], 1),
|
| 799 |
+
"average_processing_time": self.inference_stats["average_processing_time"],
|
| 800 |
+
"model_usage_breakdown": self.inference_stats["model_usage_counts"],
|
| 801 |
+
"error_breakdown": self.inference_stats["error_counts"],
|
| 802 |
+
"router_health": "healthy" if self.inference_stats["successful_inferences"] > self.inference_stats["total_inferences"] * 0.8 else "degraded"
|
| 803 |
+
}
|
| 804 |
+
|
| 805 |
+
|
| 806 |
+
# Export main classes
|
| 807 |
+
__all__ = [
|
| 808 |
+
"SpecializedModelRouter",
|
| 809 |
+
"ModelInferenceResult",
|
| 810 |
+
"SpecializedModelConfig"
|
| 811 |
+
]
|