Spaces:
Running
on
Zero
Running
on
Zero
Upload folder using huggingface_hub
Browse files- 1_cache/hollow_knight_bosses.pkl +3 -0
- 2_cache/silksong_areas.pkl +3 -0
- 2_cache/silksong_bosses.pkl +3 -0
- 2_cache/silksong_game.pkl +3 -0
- 2_cache/silksong_hornet.pkl +3 -0
- 2_cache/silksong_items.pkl +3 -0
- 2_cache/silksong_npcs.pkl +3 -0
- 2_cache/silksong_tasks.pkl +3 -0
- 2_cache/silksong_tools_and_skills.pkl +3 -0
- app.py +18 -435
- chat_context.py +8 -0
- config.py +187 -0
- rag_service.py +165 -0
- ui.py +71 -0
- web_helper.py +37 -0
1_cache/hollow_knight_bosses.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:63698148fb5388bea51df998f0dd7c3a44c485378bc6f027054e543462258c9f
|
| 3 |
+
size 1019434
|
2_cache/silksong_areas.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:941ad2fefd649820a08f377cd17e76cc55aca6b4e95438fe2a72ab47f3467e5d
|
| 3 |
+
size 340610
|
2_cache/silksong_bosses.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fd8ca945cb1fd248ad50abd3aa8dfc89826fab4acbbcb1d1920432b769b4c306
|
| 3 |
+
size 554238
|
2_cache/silksong_game.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f16cfbac2c5f4c6f51132c16eafca4608c6ebbcad266ae25788d00025725aacd
|
| 3 |
+
size 12448
|
2_cache/silksong_hornet.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5798a9c5a1162da9c28db56e482dc952df2b965ebd6c36caf5fa1e56f4f739cd
|
| 3 |
+
size 9765
|
2_cache/silksong_items.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9cff1185e6c6f2542463e48688fbecbe1ae913e6a09e9c643580be9e39886bd7
|
| 3 |
+
size 319964
|
2_cache/silksong_npcs.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3f21a378066dcbf00dceafb662cd402662a0d59b28807b4001e417c8df22a979
|
| 3 |
+
size 417322
|
2_cache/silksong_tasks.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:01ba382313632a863f8be78d9cdb6ab02ecefb1481d81579208d8f531260f5ee
|
| 3 |
+
size 52086
|
2_cache/silksong_tools_and_skills.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3c2fb17b9eb9e26a93a8b50bb19b8e82d0504b80519620723c6cb05c1fb4b623
|
| 3 |
+
size 260332
|
app.py
CHANGED
|
@@ -1,439 +1,22 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import requests
|
| 3 |
-
import os
|
| 4 |
-
import pickle
|
| 5 |
-
import spaces
|
| 6 |
-
import torch
|
| 7 |
-
from bs4 import BeautifulSoup
|
| 8 |
-
from html_to_markdown import convert_to_markdown
|
| 9 |
from huggingface_hub import login
|
| 10 |
-
from
|
| 11 |
-
from
|
| 12 |
-
from
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
# Hugging Face & Model Configuration
|
| 19 |
-
HF_TOKEN = os.getenv('HF_TOKEN')
|
| 20 |
-
EMBEDDING_MODEL_ID = "google/embeddinggemma-300M"
|
| 21 |
-
LLM_MODEL_ID = "google/gemma-3-12B-it"
|
| 22 |
-
|
| 23 |
-
# Data Source Configuration
|
| 24 |
-
BASE_URL = "https://hollowknight.wiki"
|
| 25 |
-
|
| 26 |
-
GAME_KNOWLEDGE_DATA = [
|
| 27 |
-
{
|
| 28 |
-
"title": "Hollow Knight",
|
| 29 |
-
"category_list": [
|
| 30 |
-
{
|
| 31 |
-
"entry": "/w/Category:Bosses_(Hollow_Knight)",
|
| 32 |
-
"cache": "hollow_knight_bosses.pkl",
|
| 33 |
-
"label": "Bosses",
|
| 34 |
-
},
|
| 35 |
-
],
|
| 36 |
-
},
|
| 37 |
-
{
|
| 38 |
-
"title": "Silksong",
|
| 39 |
-
"category_list": [
|
| 40 |
-
{
|
| 41 |
-
"entry": "/w/Hornet_(Silksong)",
|
| 42 |
-
"cache": "silksong_hornet.pkl",
|
| 43 |
-
"label": "General",
|
| 44 |
-
},
|
| 45 |
-
{
|
| 46 |
-
"entry": "/w/Hollow_Knight:_Silksong",
|
| 47 |
-
"cache": "silksong_game.pkl",
|
| 48 |
-
"label": "General",
|
| 49 |
-
},
|
| 50 |
-
{
|
| 51 |
-
"entry": "/w/Category:Areas_(Silksong)",
|
| 52 |
-
"cache": "silksong_areas.pkl",
|
| 53 |
-
"label": "Areas",
|
| 54 |
-
},
|
| 55 |
-
{
|
| 56 |
-
"entry": "/w/Category:Bosses_(Silksong)",
|
| 57 |
-
"cache": "silksong_bosses.pkl",
|
| 58 |
-
"label": "Bosses",
|
| 59 |
-
},
|
| 60 |
-
{
|
| 61 |
-
"entry": "/w/Category:Items_(Silksong)",
|
| 62 |
-
"cache": "silksong_items.pkl",
|
| 63 |
-
"label": "Items",
|
| 64 |
-
},
|
| 65 |
-
{
|
| 66 |
-
"entry": "/w/Category:NPCs_(Silksong)",
|
| 67 |
-
"cache": "silksong_npcs.pkl",
|
| 68 |
-
"label": "NPCs",
|
| 69 |
-
},
|
| 70 |
-
{
|
| 71 |
-
"entry": "/w/Tasks",
|
| 72 |
-
"cache": "silksong_tasks.pkl",
|
| 73 |
-
"label": "Tasks",
|
| 74 |
-
},
|
| 75 |
-
{
|
| 76 |
-
"entry": "/w/Category:Tools_and_Skills_(Silksong)",
|
| 77 |
-
"cache": "silksong_tools_and_skills.pkl",
|
| 78 |
-
"label": "Tools and Skills",
|
| 79 |
-
},
|
| 80 |
-
],
|
| 81 |
-
},
|
| 82 |
-
]
|
| 83 |
-
|
| 84 |
-
# Gradio App Configuration
|
| 85 |
-
BASE_SIMILARITY_THRESHOLD = 0.2
|
| 86 |
-
FOLLOWUP_SIMILARITY_THRESHOLD = 0.5
|
| 87 |
-
DEFAULT_MESSAGE_NO_MATCH = "I'm sorry, I can't find a relevant document to answer that question."
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
# --- 2. HELPER FUNCTIONS ---
|
| 91 |
-
# Reusable functions for web scraping and data processing.
|
| 92 |
-
|
| 93 |
-
def _get_html(url: str) -> str:
|
| 94 |
-
"""Fetches HTML content from a URL."""
|
| 95 |
-
try:
|
| 96 |
-
response = requests.get(url)
|
| 97 |
-
response.raise_for_status() # Raises an HTTPError for bad responses (4xx or 5xx)
|
| 98 |
-
return response.text
|
| 99 |
-
except requests.exceptions.RequestException as e:
|
| 100 |
-
print(f"Error fetching {url}: {e}")
|
| 101 |
-
return ""
|
| 102 |
-
|
| 103 |
-
def _find_wiki_links(html_content: str) -> list[str]:
|
| 104 |
-
"""Parses HTML to find all boss links within the 'mw-pages' div."""
|
| 105 |
-
soup = BeautifulSoup(html_content, 'html.parser')
|
| 106 |
-
mw_pages_div = soup.find('div', id='mw-pages')
|
| 107 |
-
if not mw_pages_div:
|
| 108 |
-
return []
|
| 109 |
-
return [a['href'] for a in mw_pages_div.find_all('a', href=True)]
|
| 110 |
-
|
| 111 |
-
def _get_markdown_from_html(html: str) -> str:
|
| 112 |
-
if not html:
|
| 113 |
-
return ""
|
| 114 |
-
|
| 115 |
-
soup = BeautifulSoup(html, 'html.parser')
|
| 116 |
-
return convert_to_markdown(soup)
|
| 117 |
-
|
| 118 |
-
def _get_markdown_from_url(url: str) -> str:
|
| 119 |
-
return _get_markdown_from_html(_get_html(url))
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
# --- 3. DATA PROCESSING & CACHING ---
|
| 123 |
-
# Scrapes data and generates embeddings, using a cache to avoid re-running.
|
| 124 |
-
|
| 125 |
-
def _clean_text(text: str) -> str:
|
| 126 |
-
"""Removes the references section from the raw text."""
|
| 127 |
-
return text.split("References\n----------\n", 1)[0].strip()
|
| 128 |
-
|
| 129 |
-
@torch.no_grad()
|
| 130 |
-
def _create_data_entry(text: str, doc_path: str, label: str, embedding_model) -> dict | None:
|
| 131 |
-
"""Creates a single structured data entry with text, metadata, and embedding."""
|
| 132 |
-
cleaned_text = _clean_text(text)
|
| 133 |
-
if not cleaned_text:
|
| 134 |
-
return None
|
| 135 |
-
|
| 136 |
-
title = doc_path.split('/')[-1]
|
| 137 |
-
# Encode returns a numpy array; convert to tensor for stacking later.
|
| 138 |
-
embedding = embedding_model.encode(cleaned_text, prompt=f"title: {title} | text: ")
|
| 139 |
-
return {
|
| 140 |
-
"text": cleaned_text,
|
| 141 |
-
"embedding": torch.tensor(embedding), ### Store as tensor for faster processing
|
| 142 |
-
"metadata": {
|
| 143 |
-
"category": label,
|
| 144 |
-
"source": BASE_URL + doc_path,
|
| 145 |
-
"title": title
|
| 146 |
-
}
|
| 147 |
-
}
|
| 148 |
-
|
| 149 |
-
def load_or_process_source(entry_point: str, cache_file: str, label: str, embedding_model):
|
| 150 |
-
"""
|
| 151 |
-
Loads processed data from a cache file if it exists. Otherwise, scrapes,
|
| 152 |
-
processes, generates embeddings, and saves to the cache.
|
| 153 |
-
"""
|
| 154 |
-
if os.path.exists(cache_file):
|
| 155 |
-
print(f"✅ Found cache for {label}. Loading data from '{cache_file}'...")
|
| 156 |
-
with open(cache_file, 'rb') as f:
|
| 157 |
-
return pickle.load(f)
|
| 158 |
-
|
| 159 |
-
print(f"ℹ️ No cache for {label}. Starting data scraping and processing...")
|
| 160 |
-
processed_data = []
|
| 161 |
-
|
| 162 |
-
main_page_html = _get_html(BASE_URL + entry_point)
|
| 163 |
-
data_entry = _create_data_entry(_get_markdown_from_html(main_page_html), entry_point, label, embedding_model)
|
| 164 |
-
if (data_entry):
|
| 165 |
-
processed_data.append(data_entry)
|
| 166 |
-
|
| 167 |
-
extracted_links = _find_wiki_links(main_page_html)
|
| 168 |
-
|
| 169 |
-
for doc_path in tqdm(extracted_links, desc=f"Processing {label} Pages"):
|
| 170 |
-
full_url = BASE_URL + doc_path
|
| 171 |
-
text = _get_markdown_from_url(full_url)
|
| 172 |
-
|
| 173 |
-
data_entry = _create_data_entry(text, doc_path, label, embedding_model)
|
| 174 |
-
if data_entry:
|
| 175 |
-
processed_data.append(data_entry)
|
| 176 |
-
|
| 177 |
-
print(f"✅ {label} processing complete. Saving {len(processed_data)} entries to '{cache_file}'...")
|
| 178 |
-
with open(cache_file, 'wb') as f:
|
| 179 |
-
pickle.dump(processed_data, f)
|
| 180 |
-
|
| 181 |
-
return processed_data
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
# --- 4. CORE AI LOGIC ---
|
| 185 |
-
# Functions for finding context and generating a response.
|
| 186 |
-
|
| 187 |
-
@torch.no_grad()
|
| 188 |
-
def find_best_context(model: SentenceTransformer, query: str, contents: list[dict], similarity_threshold: float) -> int:
|
| 189 |
-
"""Finds the most relevant document index based on semantic similarity."""
|
| 190 |
-
if not query or not contents:
|
| 191 |
-
return -1
|
| 192 |
-
|
| 193 |
-
query_embedding = model.encode(query, prompt_name="query", convert_to_tensor=True).to(model.device)
|
| 194 |
-
|
| 195 |
-
try:
|
| 196 |
-
# Stack pre-computed tensors from our knowledge base
|
| 197 |
-
contents_embeddings = torch.stack([item["embedding"] for item in contents]).to(model.device)
|
| 198 |
-
except (RuntimeError, IndexError, TypeError) as e:
|
| 199 |
-
print(f"Warning: Could not stack content embeddings. Error: {e}")
|
| 200 |
-
return -1
|
| 201 |
-
|
| 202 |
-
# Compute cosine similarity between the 1 query embedding and N content embeddings
|
| 203 |
-
similarities = util.pytorch_cos_sim(query_embedding, contents_embeddings)
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
if best_score >= similarity_threshold:
|
| 215 |
-
print(f"Using \"{contents[best_index]['metadata']['source']}\"...")
|
| 216 |
-
return best_index
|
| 217 |
-
|
| 218 |
-
print("No context met the similarity threshold.")
|
| 219 |
-
return -1
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
class ChatContext(object):
|
| 223 |
-
context_index = -1
|
| 224 |
-
base_similarity = BASE_SIMILARITY_THRESHOLD
|
| 225 |
-
followup_similarity = FOLLOWUP_SIMILARITY_THRESHOLD
|
| 226 |
-
|
| 227 |
-
default_context = ChatContext()
|
| 228 |
-
|
| 229 |
-
@spaces.GPU
|
| 230 |
-
def respond(message: str, history: list, game: str, chat_context: ChatContext):
|
| 231 |
-
"""Generates a streaming response from the LLM based on the best context found."""
|
| 232 |
-
default_threshold = chat_context.base_similarity
|
| 233 |
-
followup_threshold = chat_context.followup_similarity
|
| 234 |
-
|
| 235 |
-
contents = _select_content(game)
|
| 236 |
-
if not contents:
|
| 237 |
-
print(f"No content found for {game}")
|
| 238 |
-
chat_context.context_index = -1 # Return -1 to reset context
|
| 239 |
-
yield DEFAULT_MESSAGE_NO_MATCH, chat_context
|
| 240 |
-
return
|
| 241 |
-
|
| 242 |
-
if len(history) == 0:
|
| 243 |
-
# Clear context on a new conversation
|
| 244 |
-
print("New conversation started. Clearing context.")
|
| 245 |
-
chat_context.context_index = -1
|
| 246 |
-
|
| 247 |
-
# Determine threshold: Use follow-up ONLY if we have a valid previous context.
|
| 248 |
-
similarity_threshold = followup_threshold if chat_context.context_index != -1 else default_threshold
|
| 249 |
-
print(f"Using {'follow-up' if chat_context.context_index != -1 else 'default'} threshold: {similarity_threshold}")
|
| 250 |
-
|
| 251 |
-
# Find the best new context based on the current message
|
| 252 |
-
found_context_index = find_best_context(embedding_model, message, contents, similarity_threshold)
|
| 253 |
-
|
| 254 |
-
if found_context_index >= 0:
|
| 255 |
-
chat_context.context_index = found_context_index # A new, relevant context was found and set
|
| 256 |
-
elif chat_context.context_index >= 0:
|
| 257 |
-
# PASS: A follow-up question, but no new context. Reuse the old one.
|
| 258 |
-
print("No new context found, reusing previous context for follow-up.")
|
| 259 |
-
else:
|
| 260 |
-
# FAILURE: No new context was found AND no previous context exists.
|
| 261 |
-
print("No context found and no previous context. Yielding no match.")
|
| 262 |
-
yield DEFAULT_MESSAGE_NO_MATCH, chat_context
|
| 263 |
-
return
|
| 264 |
-
|
| 265 |
-
system_prompt = f"Answer the following QUESTION based only on the CONTEXT provided. If the answer cannot be found in the CONTEXT, write \"{DEFAULT_MESSAGE_NO_MATCH}\"\n---\nCONTEXT:\n{contents[chat_context.context_index]['text']}\n"
|
| 266 |
-
user_prompt = f"QUESTION:\n{message}"
|
| 267 |
-
|
| 268 |
-
messages = [{"role": "system", "content": system_prompt}]
|
| 269 |
-
# Add previous turns (history) after the system prompt but before the current question
|
| 270 |
-
messages.extend(history)
|
| 271 |
-
messages.append({"role": "user", "content": user_prompt})
|
| 272 |
-
|
| 273 |
-
# Debug print the conversation being sent (excluding the large system prompt)
|
| 274 |
-
for item in messages[1:]:
|
| 275 |
-
print(f"[{item['role']}] {item['content']}")
|
| 276 |
-
|
| 277 |
-
streamer = TextIteratorStreamer(llm_pipeline.tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 278 |
-
|
| 279 |
-
thread = Thread(
|
| 280 |
-
target=llm_pipeline,
|
| 281 |
-
kwargs=dict(
|
| 282 |
-
text_inputs=messages,
|
| 283 |
-
streamer=streamer,
|
| 284 |
-
max_new_tokens=512,
|
| 285 |
-
do_sample=True,
|
| 286 |
-
top_p=0.95,
|
| 287 |
-
temperature=0.7,
|
| 288 |
-
)
|
| 289 |
-
)
|
| 290 |
-
thread.start()
|
| 291 |
-
|
| 292 |
-
response = ""
|
| 293 |
-
for new_text in streamer:
|
| 294 |
-
response += new_text
|
| 295 |
-
# Yield the partial response AND the current state
|
| 296 |
-
yield response, chat_context
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
# --- 5. INITIALIZATION ---
|
| 300 |
-
# Login, load models, and process data.
|
| 301 |
-
|
| 302 |
-
print("Logging into Hugging Face Hub...")
|
| 303 |
-
login(token=HF_TOKEN)
|
| 304 |
-
|
| 305 |
-
print("Initializing embedding model...")
|
| 306 |
-
embedding_model = SentenceTransformer(EMBEDDING_MODEL_ID)
|
| 307 |
-
|
| 308 |
-
print("Initializing language model...")
|
| 309 |
-
llm_pipeline = pipeline(
|
| 310 |
-
"text-generation",
|
| 311 |
-
model=LLM_MODEL_ID,
|
| 312 |
-
device_map="auto",
|
| 313 |
-
dtype="auto",
|
| 314 |
-
)
|
| 315 |
-
|
| 316 |
-
print("\n--- Processing Game Data ---")
|
| 317 |
-
knowledge_base = {}
|
| 318 |
-
|
| 319 |
-
for item in GAME_KNOWLEDGE_DATA:
|
| 320 |
-
knowledge_base[item['title']] = []
|
| 321 |
-
for category in item['category_list']:
|
| 322 |
-
knowledge_base[item['title']] += load_or_process_source(category['entry'], category['cache'], category['label'], embedding_model)
|
| 323 |
-
|
| 324 |
-
def _select_content(game: str):
|
| 325 |
-
return knowledge_base[game]
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
# --- 6. GRADIO UI ---
|
| 329 |
-
# Defines the web interface for the chatbot.
|
| 330 |
-
gr.set_static_paths(paths=["assets/"])
|
| 331 |
-
|
| 332 |
-
# Theme and CSS for the Silksong aesthetic
|
| 333 |
-
silksong_theme = gr.themes.Default(
|
| 334 |
-
primary_hue=gr.themes.colors.red,
|
| 335 |
-
secondary_hue=gr.themes.colors.zinc,
|
| 336 |
-
neutral_hue=gr.themes.colors.zinc,
|
| 337 |
-
font=[gr.themes.GoogleFont("IM Fell English"), "ui-sans-serif", "system-ui", "sans-serif"],
|
| 338 |
-
)
|
| 339 |
-
|
| 340 |
-
silksong_css="""
|
| 341 |
-
.gradio-container {
|
| 342 |
-
background-image: linear-gradient(rgba(255,255,255, 0.5), rgba(255, 255, 255, 1.0)), url("/gradio_api/file=assets/background.jpg");
|
| 343 |
-
background-size: 100%;
|
| 344 |
-
background-repeat: no-repeat;
|
| 345 |
-
background-position: top center;
|
| 346 |
-
}
|
| 347 |
-
body.dark .gradio-container {
|
| 348 |
-
background-image: linear-gradient(rgba(0, 0, 0, 0.5), rgba(0, 0, 0, 1.0)), url("/gradio_api/file=assets/background.jpg");
|
| 349 |
-
}
|
| 350 |
-
.header-text { text-align: center; text-shadow: 2px 2px 5px #000; }
|
| 351 |
-
.header-text h1 { font-size: 2.5em; color: #dc2626; }
|
| 352 |
-
.dark .header-text { text-shadow: 2px 2px 5px #FFF; }
|
| 353 |
-
.context { text-align: center; color: var(--body-text-color-subdued); }
|
| 354 |
-
.context a { color: #dc2626; }
|
| 355 |
-
.disclaimer { text-align: center; color: var(--body-text-color-subdued); font-size: 0.9em; padding: 20px; }
|
| 356 |
-
.disclaimer ul { list-style: none; padding: 0; }
|
| 357 |
-
.disclaimer a { color: #dc2626; }
|
| 358 |
-
"""
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
def _index_changed(context_state: ChatContext, game_title: str):
|
| 362 |
-
"""Updates the HTML context display when the context_index state changes."""
|
| 363 |
-
context_index = context_state.context_index
|
| 364 |
-
if context_index < 0:
|
| 365 |
-
return """<div class="context">Context: None</div>"""
|
| 366 |
-
|
| 367 |
-
contents = _select_content(game_title)
|
| 368 |
-
if not contents or context_index >= len(contents):
|
| 369 |
-
return """<div class="context">Context: Error</div>"""
|
| 370 |
-
|
| 371 |
-
url = contents[context_index]['metadata']['source']
|
| 372 |
-
title = contents[context_index]['metadata']['title']
|
| 373 |
-
return f"""<div class="context">Context: <a href="{url}" target="_blank">{title}</a></div>"""
|
| 374 |
-
|
| 375 |
-
def _title_changed(context_state: ChatContext):
|
| 376 |
-
"""Resets the context display and the context state when the game is changed."""
|
| 377 |
-
context_state.context_index = -1
|
| 378 |
-
return """<div class="context">Context: None</div>""", context_state
|
| 379 |
-
|
| 380 |
-
def _sim_changed(context_state: ChatContext, base_sim: float, followup_sim: float):
|
| 381 |
-
context_state.base_similarity = base_sim
|
| 382 |
-
context_state.followup_similarity = followup_sim
|
| 383 |
-
return context_state
|
| 384 |
-
|
| 385 |
-
with gr.Blocks(theme=silksong_theme, css=silksong_css) as demo:
|
| 386 |
-
gr.HTML("""
|
| 387 |
-
<div class="header-text">
|
| 388 |
-
<h1>A Weaver's Counsel</h1>
|
| 389 |
-
<p>Speak, little traveler. What secrets of Pharloom do you seek?</p>
|
| 390 |
-
<p style="font-style: italic;">(Note: This bot has a limited knowledge.)</p>
|
| 391 |
-
</div>
|
| 392 |
-
""")
|
| 393 |
-
|
| 394 |
-
game_title = gr.Dropdown(["Hollow Knight", "Silksong"], label="Game", value="Silksong")
|
| 395 |
-
|
| 396 |
-
output = gr.HTML("""<div class="context">Context: None</div>""")
|
| 397 |
-
|
| 398 |
-
# Link the state object to the UI elements
|
| 399 |
-
context_state = gr.State(default_context)
|
| 400 |
-
context_state.change(_index_changed, [context_state, game_title], output)
|
| 401 |
-
game_title.change(_title_changed, context_state, [output, context_state])
|
| 402 |
-
|
| 403 |
-
gr.ChatInterface(
|
| 404 |
-
respond,
|
| 405 |
-
type="messages",
|
| 406 |
-
chatbot=gr.Chatbot(type="messages", label=LLM_MODEL_ID),
|
| 407 |
-
textbox=gr.Textbox(placeholder="Ask about the haunted kingdom...", container=False, submit_btn=True, scale=7),
|
| 408 |
-
additional_inputs=[
|
| 409 |
-
game_title,
|
| 410 |
-
context_state, ### Pass the state object as an input
|
| 411 |
-
],
|
| 412 |
-
additional_outputs=[context_state], ### Receive the updated state as an output
|
| 413 |
-
examples=[
|
| 414 |
-
["Where can I find the Moorwing?", "Silksong"],
|
| 415 |
-
["Who is the voice of Lace?", "Silksong"],
|
| 416 |
-
["How can I beat the False Knight?", "Hollow Knight"],
|
| 417 |
-
["Any achievement for Hornet Protector?", "Hollow Knight"],
|
| 418 |
-
],
|
| 419 |
-
cache_examples=False,
|
| 420 |
-
)
|
| 421 |
-
|
| 422 |
-
base_sim = gr.Slider(minimum=0.1, maximum=1.0, value=BASE_SIMILARITY_THRESHOLD, step=0.1, label="Base Similarity Threshold")
|
| 423 |
-
followup_sim = gr.Slider(minimum=0.1, maximum=1.0, value=FOLLOWUP_SIMILARITY_THRESHOLD, step=0.1, label="Similarity Threshold with follow-up questions (multi-turn)")
|
| 424 |
-
base_sim.release(_sim_changed, [context_state, base_sim, followup_sim], context_state)
|
| 425 |
-
followup_sim.release(_sim_changed, [context_state, base_sim, followup_sim], context_state)
|
| 426 |
-
|
| 427 |
-
gr.HTML("""
|
| 428 |
-
<div class="disclaimer">
|
| 429 |
-
<p><strong>Disclaimer:</strong></p>
|
| 430 |
-
<ul style="list-style: none; padding: 0;">
|
| 431 |
-
<li>This is a fan-made personal demonstration and not affiliated with any organization.<br>The bot is for entertainment purposes only.</li>
|
| 432 |
-
<li>Factual information is sourced from the <a href="https://hollowknight.wiki" target="_blank">Hollow Knight Wiki</a>.<br>Content is available under <a href="https://creativecommons.org/licenses/by-sa/3.0/" target="_blank">Commons Attribution-ShareAlike</a> unless otherwise noted.</li>
|
| 433 |
-
<li>Built by <a href="https://huggingface.co/bebechien" target="_blank">bebechien</a> with a 💖 for the world of Hollow Knight.</li>
|
| 434 |
-
</ul>
|
| 435 |
-
</div>
|
| 436 |
-
""")
|
| 437 |
|
| 438 |
if __name__ == "__main__":
|
| 439 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from huggingface_hub import login
|
| 2 |
+
from config import HF_TOKEN, GAME_KNOWLEDGE_DATA, EMBEDDING_MODEL_ID, LLM_MODEL_ID
|
| 3 |
+
from rag_service import RAGService
|
| 4 |
+
from ui import build_gradio_ui
|
| 5 |
+
|
| 6 |
+
def main():
|
| 7 |
+
"""Main function to initialize and launch the chatbot application."""
|
| 8 |
+
print("Logging into Hugging Face Hub...")
|
| 9 |
+
login(token=HF_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# 1. Create the single service instance. This loads all models and data.
|
| 12 |
+
rag_service = RAGService(GAME_KNOWLEDGE_DATA, EMBEDDING_MODEL_ID, LLM_MODEL_ID)
|
| 13 |
+
|
| 14 |
+
# 2. Build the UI, passing the service instance to it.
|
| 15 |
+
demo = build_gradio_ui(rag_service)
|
| 16 |
+
|
| 17 |
+
# 3. Launch the application.
|
| 18 |
+
print("Launching Gradio demo...")
|
| 19 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
if __name__ == "__main__":
|
| 22 |
+
main()
|
chat_context.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from config import BASE_SIMILARITY_THRESHOLD, FOLLOWUP_SIMILARITY_THRESHOLD
|
| 2 |
+
|
| 3 |
+
class ChatContext:
|
| 4 |
+
"""Holds the conversational state, including the current context and thresholds."""
|
| 5 |
+
def __init__(self):
|
| 6 |
+
self.context_index = -1
|
| 7 |
+
self.base_similarity = BASE_SIMILARITY_THRESHOLD
|
| 8 |
+
self.followup_similarity = FOLLOWUP_SIMILARITY_THRESHOLD
|
config.py
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import pickle
|
| 4 |
+
import torch
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
|
| 7 |
+
from web_helper import get_html, find_wiki_links, get_markdown_from_html, get_markdown_from_url
|
| 8 |
+
|
| 9 |
+
# --- Hugging Face & Model Configuration ---
|
| 10 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
| 11 |
+
EMBEDDING_MODEL_ID = "google/embeddinggemma-300M"
|
| 12 |
+
LLM_MODEL_ID = "google/gemma-3-12B-it"
|
| 13 |
+
|
| 14 |
+
# --- Data Source Configuration ---
|
| 15 |
+
BASE_URL = "https://hollowknight.wiki"
|
| 16 |
+
GAME_KNOWLEDGE_DATA = [
|
| 17 |
+
{
|
| 18 |
+
"title": "Hollow Knight",
|
| 19 |
+
"cache_folder": "1_cache",
|
| 20 |
+
"category_list": [
|
| 21 |
+
{
|
| 22 |
+
"entry": "/w/Category:Bosses_(Hollow_Knight)",
|
| 23 |
+
"cache": "hollow_knight_bosses.pkl",
|
| 24 |
+
"label": "Bosses",
|
| 25 |
+
},
|
| 26 |
+
],
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"title": "Silksong",
|
| 30 |
+
"cache_folder": "2_cache",
|
| 31 |
+
"category_list": [
|
| 32 |
+
{
|
| 33 |
+
"entry": "/w/Hornet_(Silksong)",
|
| 34 |
+
"cache": "silksong_hornet.pkl",
|
| 35 |
+
"label": "General",
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"entry": "/w/Hollow_Knight:_Silksong",
|
| 39 |
+
"cache": "silksong_game.pkl",
|
| 40 |
+
"label": "General",
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"entry": "/w/Category:Areas_(Silksong)",
|
| 44 |
+
"cache": "silksong_areas.pkl",
|
| 45 |
+
"label": "Areas",
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"entry": "/w/Category:Bosses_(Silksong)",
|
| 49 |
+
"cache": "silksong_bosses.pkl",
|
| 50 |
+
"label": "Bosses",
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"entry": "/w/Category:Items_(Silksong)",
|
| 54 |
+
"cache": "silksong_items.pkl",
|
| 55 |
+
"label": "Items",
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"entry": "/w/Category:NPCs_(Silksong)",
|
| 59 |
+
"cache": "silksong_npcs.pkl",
|
| 60 |
+
"label": "NPCs",
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"entry": "/w/Tasks",
|
| 64 |
+
"cache": "silksong_tasks.pkl",
|
| 65 |
+
"label": "Tasks",
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"entry": "/w/Category:Tools_and_Skills_(Silksong)",
|
| 69 |
+
"cache": "silksong_tools_and_skills.pkl",
|
| 70 |
+
"label": "Tools and Skills",
|
| 71 |
+
},
|
| 72 |
+
],
|
| 73 |
+
},
|
| 74 |
+
]
|
| 75 |
+
|
| 76 |
+
def get_all_game_data(embedding_model):
|
| 77 |
+
"""Loops through the config and processes/loads all knowledge sources."""
|
| 78 |
+
print("\n--- Processing Game Data ---")
|
| 79 |
+
knowledge_base = {}
|
| 80 |
+
|
| 81 |
+
for item in GAME_KNOWLEDGE_DATA:
|
| 82 |
+
title = item['title']
|
| 83 |
+
knowledge_base[title] = []
|
| 84 |
+
for category in item['category_list']:
|
| 85 |
+
cache_path = f"""{item["cache_folder"]}/{category["cache"]}"""
|
| 86 |
+
knowledge_base[title] += _load_or_process_source(
|
| 87 |
+
category['entry'],
|
| 88 |
+
cache_path,
|
| 89 |
+
category['label'],
|
| 90 |
+
embedding_model
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
return knowledge_base
|
| 94 |
+
|
| 95 |
+
# --- DATA PROCESSING & CACHING ---
|
| 96 |
+
# Scrapes data and generates embeddings, using a cache to avoid re-running.
|
| 97 |
+
def _clean_text(text: str) -> str:
|
| 98 |
+
"""Removes the references section from the raw text."""
|
| 99 |
+
return text.split("References\n----------\n", 1)[0].strip()
|
| 100 |
+
|
| 101 |
+
@torch.no_grad()
|
| 102 |
+
def _create_data_entry(text: str, doc_path: str, label: str, embedding_model) -> dict | None:
|
| 103 |
+
"""Creates a single structured data entry with text, metadata, and embedding."""
|
| 104 |
+
cleaned_text = _clean_text(text)
|
| 105 |
+
if not cleaned_text:
|
| 106 |
+
return None
|
| 107 |
+
|
| 108 |
+
title = doc_path.split('/')[-1]
|
| 109 |
+
# Encode returns a numpy array; convert to tensor for stacking later.
|
| 110 |
+
embedding = embedding_model.encode(cleaned_text, prompt=f"title: {title} | text: ")
|
| 111 |
+
return {
|
| 112 |
+
"text": cleaned_text,
|
| 113 |
+
"embedding": torch.tensor(embedding), ### Store as tensor for faster processing
|
| 114 |
+
"metadata": {
|
| 115 |
+
"category": label,
|
| 116 |
+
"source": BASE_URL + doc_path,
|
| 117 |
+
"title": title
|
| 118 |
+
}
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
def _load_or_process_source(entry_point: str, cache_file: str, label: str, embedding_model):
|
| 122 |
+
"""
|
| 123 |
+
Loads processed data from a cache file if it exists. Otherwise, scrapes,
|
| 124 |
+
processes, generates embeddings, and saves to the cache.
|
| 125 |
+
"""
|
| 126 |
+
if os.path.exists(cache_file):
|
| 127 |
+
print(f"✅ Found cache for {label}. Loading data from '{cache_file}'...")
|
| 128 |
+
with open(cache_file, 'rb') as f:
|
| 129 |
+
return pickle.load(f)
|
| 130 |
+
|
| 131 |
+
print(f"ℹ️ No cache for {label}. Starting data scraping and processing...")
|
| 132 |
+
processed_data = []
|
| 133 |
+
|
| 134 |
+
main_page_html = get_html(BASE_URL + entry_point)
|
| 135 |
+
data_entry = _create_data_entry(get_markdown_from_html(main_page_html), entry_point, label, embedding_model)
|
| 136 |
+
if (data_entry):
|
| 137 |
+
processed_data.append(data_entry)
|
| 138 |
+
|
| 139 |
+
extracted_links = find_wiki_links(main_page_html)
|
| 140 |
+
|
| 141 |
+
for doc_path in tqdm(extracted_links, desc=f"Processing {label} Pages"):
|
| 142 |
+
full_url = BASE_URL + doc_path
|
| 143 |
+
text = get_markdown_from_url(full_url)
|
| 144 |
+
|
| 145 |
+
data_entry = _create_data_entry(text, doc_path, label, embedding_model)
|
| 146 |
+
if data_entry:
|
| 147 |
+
processed_data.append(data_entry)
|
| 148 |
+
|
| 149 |
+
print(f"✅ {label} processing complete. Saving {len(processed_data)} entries to '{cache_file}'...")
|
| 150 |
+
with open(cache_file, 'wb') as f:
|
| 151 |
+
pickle.dump(processed_data, f)
|
| 152 |
+
|
| 153 |
+
return processed_data
|
| 154 |
+
|
| 155 |
+
# --- App Logic Configuration ---
|
| 156 |
+
BASE_SIMILARITY_THRESHOLD = 0.2
|
| 157 |
+
FOLLOWUP_SIMILARITY_THRESHOLD = 0.5
|
| 158 |
+
DEFAULT_MESSAGE_NO_MATCH = "I'm sorry, I can't find a relevant document to answer that question."
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# --- Gradio UI Configuration ---
|
| 162 |
+
silksong_theme = gr.themes.Default(
|
| 163 |
+
primary_hue=gr.themes.colors.red,
|
| 164 |
+
secondary_hue=gr.themes.colors.zinc,
|
| 165 |
+
neutral_hue=gr.themes.colors.zinc,
|
| 166 |
+
font=[gr.themes.GoogleFont("IM Fell English"), "ui-sans-serif", "system-ui", "sans-serif"],
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
silksong_css="""
|
| 170 |
+
.gradio-container {
|
| 171 |
+
background-image: linear-gradient(rgba(255,255,255, 0.5), rgba(255, 255, 255, 1.0)), url("/gradio_api/file=assets/background.jpg");
|
| 172 |
+
background-size: 100%;
|
| 173 |
+
background-repeat: no-repeat;
|
| 174 |
+
background-position: top center;
|
| 175 |
+
}
|
| 176 |
+
body.dark .gradio-container {
|
| 177 |
+
background-image: linear-gradient(rgba(0, 0, 0, 0.5), rgba(0, 0, 0, 1.0)), url("/gradio_api/file=assets/background.jpg");
|
| 178 |
+
}
|
| 179 |
+
.header-text { text-align: center; text-shadow: 2px 2px 5px #000; }
|
| 180 |
+
.header-text h1 { font-size: 2.5em; color: #dc2626; }
|
| 181 |
+
.dark .header-text { text-shadow: 2px 2px 5px #FFF; }
|
| 182 |
+
.context { text-align: center; color: var(--body-text-color-subdued); }
|
| 183 |
+
.context a { color: #dc2626; }
|
| 184 |
+
.disclaimer { text-align: center; color: var(--body-text-color-subdued); font-size: 0.9em; padding: 20px; }
|
| 185 |
+
.disclaimer ul { list-style: none; padding: 0; }
|
| 186 |
+
.disclaimer a { color: #dc2626; }
|
| 187 |
+
"""
|
rag_service.py
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import torch
|
| 3 |
+
from sentence_transformers import SentenceTransformer, util
|
| 4 |
+
from transformers import pipeline, TextIteratorStreamer
|
| 5 |
+
from threading import Thread
|
| 6 |
+
|
| 7 |
+
# Import project-specific modules
|
| 8 |
+
from config import BASE_URL, DEFAULT_MESSAGE_NO_MATCH, get_all_game_data
|
| 9 |
+
from chat_context import ChatContext
|
| 10 |
+
|
| 11 |
+
class RAGService:
|
| 12 |
+
"""Manages model loading, data processing, and chat generation logic."""
|
| 13 |
+
def __init__(self, data_config: list[dict], embedding_model_id: str, llm_model_id: str):
|
| 14 |
+
print("Initializing RAG Service...")
|
| 15 |
+
self.data_config = data_config
|
| 16 |
+
|
| 17 |
+
print("Initializing embedding model...")
|
| 18 |
+
self.embedding_model = SentenceTransformer(embedding_model_id)
|
| 19 |
+
|
| 20 |
+
print("Initializing language model...")
|
| 21 |
+
self.llm_pipeline = pipeline(
|
| 22 |
+
"text-generation",
|
| 23 |
+
model=llm_model_id,
|
| 24 |
+
device_map="auto",
|
| 25 |
+
dtype="auto",
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
self.knowledge_base: dict[str, list[dict]] = get_all_game_data(self.embedding_model)
|
| 29 |
+
|
| 30 |
+
def _select_content(self, title: str) -> list[dict]:
|
| 31 |
+
"""Helper to safely get the knowledge base for a specific title."""
|
| 32 |
+
return self.knowledge_base.get(title, [])
|
| 33 |
+
|
| 34 |
+
@torch.no_grad()
|
| 35 |
+
def find_best_context(self, query: str, contents: list[dict], similarity_threshold: float) -> int:
|
| 36 |
+
"""Finds the most relevant document index based on semantic similarity."""
|
| 37 |
+
if not query or not contents:
|
| 38 |
+
return -1
|
| 39 |
+
|
| 40 |
+
query_embedding = self.embedding_model.encode(query, prompt_name="query", convert_to_tensor=True).to(self.embedding_model.device)
|
| 41 |
+
|
| 42 |
+
try:
|
| 43 |
+
# Stack pre-computed tensors from our knowledge base
|
| 44 |
+
contents_embeddings = torch.stack([item["embedding"] for item in contents]).to(self.embedding_model.device)
|
| 45 |
+
except (RuntimeError, IndexError, TypeError) as e:
|
| 46 |
+
print(f"Warning: Could not stack content embeddings. Error: {e}")
|
| 47 |
+
return -1
|
| 48 |
+
|
| 49 |
+
# Compute cosine similarity between the 1 query embedding and N content embeddings
|
| 50 |
+
similarities = util.pytorch_cos_sim(query_embedding, contents_embeddings)
|
| 51 |
+
|
| 52 |
+
if similarities.numel() == 0:
|
| 53 |
+
print("Warning: Similarity computation returned an empty tensor.")
|
| 54 |
+
return -1
|
| 55 |
+
|
| 56 |
+
# Get the index and score of the top match
|
| 57 |
+
best_index = similarities.argmax().item()
|
| 58 |
+
best_score = similarities[0, best_index].item()
|
| 59 |
+
|
| 60 |
+
print(f"Best score: {best_score:.4f} (Threshold: {similarity_threshold})")
|
| 61 |
+
if best_score >= similarity_threshold:
|
| 62 |
+
print(f"Using \"{contents[best_index]['metadata']['source']}\"...")
|
| 63 |
+
return best_index
|
| 64 |
+
|
| 65 |
+
print("No context met the similarity threshold.")
|
| 66 |
+
return -1
|
| 67 |
+
|
| 68 |
+
@spaces.GPU
|
| 69 |
+
def respond(self, message: str, history: list, title: str, chat_context: ChatContext):
|
| 70 |
+
"""Generates a streaming response from the LLM based on the best context found."""
|
| 71 |
+
default_threshold = chat_context.base_similarity
|
| 72 |
+
followup_threshold = chat_context.followup_similarity
|
| 73 |
+
|
| 74 |
+
contents = self._select_content(title)
|
| 75 |
+
if not contents:
|
| 76 |
+
print(f"No content found for {title}")
|
| 77 |
+
chat_context.context_index = -1 # Return -1 to reset context
|
| 78 |
+
yield DEFAULT_MESSAGE_NO_MATCH, chat_context
|
| 79 |
+
return
|
| 80 |
+
|
| 81 |
+
if len(history) == 0:
|
| 82 |
+
# Clear context on a new conversation
|
| 83 |
+
print("New conversation started. Clearing context.")
|
| 84 |
+
chat_context.context_index = -1
|
| 85 |
+
|
| 86 |
+
# Determine threshold: Use follow-up ONLY if we have a valid previous context.
|
| 87 |
+
similarity_threshold = followup_threshold if chat_context.context_index != -1 else default_threshold
|
| 88 |
+
print(f"Using {'follow-up' if chat_context.context_index != -1 else 'default'} threshold: {similarity_threshold}")
|
| 89 |
+
|
| 90 |
+
# Find the best new context based on the current message
|
| 91 |
+
found_context_index = self.find_best_context(message, contents, similarity_threshold)
|
| 92 |
+
|
| 93 |
+
if found_context_index >= 0:
|
| 94 |
+
chat_context.context_index = found_context_index # A new, relevant context was found and set
|
| 95 |
+
elif chat_context.context_index >= 0:
|
| 96 |
+
# PASS: A follow-up question, but no new context. Reuse the old one.
|
| 97 |
+
print("No new context found, reusing previous context for follow-up.")
|
| 98 |
+
else:
|
| 99 |
+
# FAILURE: No new context was found AND no previous context exists.
|
| 100 |
+
print("No context found and no previous context. Yielding no match.")
|
| 101 |
+
yield DEFAULT_MESSAGE_NO_MATCH, chat_context
|
| 102 |
+
return
|
| 103 |
+
|
| 104 |
+
system_prompt = f"Answer the following QUESTION based only on the CONTEXT provided. If the answer cannot be found in the CONTEXT, write \"{DEFAULT_MESSAGE_NO_MATCH}\"\n---\nCONTEXT:\n{contents[chat_context.context_index]['text']}\n"
|
| 105 |
+
user_prompt = f"QUESTION:\n{message}"
|
| 106 |
+
|
| 107 |
+
messages = [{"role": "system", "content": system_prompt}]
|
| 108 |
+
# Add previous turns (history) after the system prompt but before the current question
|
| 109 |
+
messages.extend(history)
|
| 110 |
+
messages.append({"role": "user", "content": user_prompt})
|
| 111 |
+
|
| 112 |
+
# Debug print the conversation being sent (excluding the large system prompt)
|
| 113 |
+
for item in messages[1:]:
|
| 114 |
+
print(f"[{item['role']}] {item['content']}")
|
| 115 |
+
|
| 116 |
+
streamer = TextIteratorStreamer(self.llm_pipeline.tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 117 |
+
|
| 118 |
+
thread = Thread(
|
| 119 |
+
target=self.llm_pipeline,
|
| 120 |
+
kwargs=dict(
|
| 121 |
+
text_inputs=messages,
|
| 122 |
+
streamer=streamer,
|
| 123 |
+
max_new_tokens=512,
|
| 124 |
+
do_sample=True,
|
| 125 |
+
top_p=0.95,
|
| 126 |
+
temperature=0.7,
|
| 127 |
+
)
|
| 128 |
+
)
|
| 129 |
+
thread.start()
|
| 130 |
+
|
| 131 |
+
response = ""
|
| 132 |
+
for new_text in streamer:
|
| 133 |
+
response += new_text
|
| 134 |
+
# Yield the partial response AND the current state
|
| 135 |
+
yield response, chat_context
|
| 136 |
+
|
| 137 |
+
# --- Gradio UI Callback Methods ---
|
| 138 |
+
|
| 139 |
+
def on_context_changed(self, context_state: ChatContext, title: str) -> str:
|
| 140 |
+
"""Updates the HTML context display when the context_index state changes."""
|
| 141 |
+
context_index = context_state.context_index
|
| 142 |
+
if context_index < 0:
|
| 143 |
+
return """<div class="context">Context: None</div>"""
|
| 144 |
+
|
| 145 |
+
contents = self._select_content(title)
|
| 146 |
+
if not contents or context_index >= len(contents):
|
| 147 |
+
return """<div class="context">Context: Error</div>"""
|
| 148 |
+
|
| 149 |
+
url = contents[context_index]['metadata']['source']
|
| 150 |
+
title = contents[context_index]['metadata']['title']
|
| 151 |
+
return f"""<div class="context">Context: <a href="{url}" target="_blank">{title}</a></div>"""
|
| 152 |
+
|
| 153 |
+
@staticmethod
|
| 154 |
+
def on_title_changed(context_state: ChatContext) -> tuple[str, ChatContext]:
|
| 155 |
+
"""Resets the context display and state when the game is changed."""
|
| 156 |
+
context_state.context_index = -1
|
| 157 |
+
return """<div class="context">Context: None</div>""", context_state
|
| 158 |
+
|
| 159 |
+
@staticmethod
|
| 160 |
+
def on_sim_changed(context_state: ChatContext, base_sim: float, followup_sim: float) -> ChatContext:
|
| 161 |
+
"""Updates the similarity thresholds in the context state."""
|
| 162 |
+
context_state.base_similarity = base_sim
|
| 163 |
+
context_state.followup_similarity = followup_sim
|
| 164 |
+
return context_state
|
| 165 |
+
|
ui.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from rag_service import RAGService
|
| 3 |
+
from chat_context import ChatContext
|
| 4 |
+
from config import (
|
| 5 |
+
silksong_theme,
|
| 6 |
+
silksong_css,
|
| 7 |
+
LLM_MODEL_ID,
|
| 8 |
+
BASE_SIMILARITY_THRESHOLD,
|
| 9 |
+
FOLLOWUP_SIMILARITY_THRESHOLD
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
def build_gradio_ui(rag_service: RAGService) -> gr.Blocks:
|
| 13 |
+
"""Creates and configures the Gradio Blocks UI."""
|
| 14 |
+
|
| 15 |
+
gr.set_static_paths(paths=["assets/"])
|
| 16 |
+
|
| 17 |
+
with gr.Blocks(theme=silksong_theme, css=silksong_css) as demo:
|
| 18 |
+
gr.HTML("""
|
| 19 |
+
<div class="header-text">
|
| 20 |
+
<h1>A Weaver's Counsel</h1>
|
| 21 |
+
<p>Speak, little traveler. What secrets of Pharloom do you seek?</p>
|
| 22 |
+
<p style="font-style: italic;">(Note: This bot has a limited knowledge.)</p>
|
| 23 |
+
</div>
|
| 24 |
+
""")
|
| 25 |
+
|
| 26 |
+
game_title = gr.Dropdown(["Hollow Knight", "Silksong"], label="Game", value="Silksong")
|
| 27 |
+
|
| 28 |
+
output = gr.HTML("""<div class="context">Context: None</div>""")
|
| 29 |
+
|
| 30 |
+
# Link the state object to the UI elements
|
| 31 |
+
context_state = gr.State(ChatContext())
|
| 32 |
+
context_state.change(rag_service.on_context_changed, [context_state, game_title], output)
|
| 33 |
+
game_title.change(rag_service.on_title_changed, context_state, [output, context_state])
|
| 34 |
+
|
| 35 |
+
gr.ChatInterface(
|
| 36 |
+
rag_service.respond,
|
| 37 |
+
type="messages",
|
| 38 |
+
chatbot=gr.Chatbot(type="messages", label=LLM_MODEL_ID),
|
| 39 |
+
textbox=gr.Textbox(placeholder="Ask about the haunted kingdom...", container=False, submit_btn=True, scale=7),
|
| 40 |
+
additional_inputs=[
|
| 41 |
+
game_title,
|
| 42 |
+
context_state, ### Pass the state object as an input
|
| 43 |
+
],
|
| 44 |
+
additional_outputs=[context_state], ### Receive the updated state as an output
|
| 45 |
+
examples=[
|
| 46 |
+
["Where can I find the Moorwing?", "Silksong"],
|
| 47 |
+
["Who is the voice of Lace?", "Silksong"],
|
| 48 |
+
["How can I beat the False Knight?", "Hollow Knight"],
|
| 49 |
+
["Any achievement for Hornet Protector?", "Hollow Knight"],
|
| 50 |
+
],
|
| 51 |
+
cache_examples=False,
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
base_sim = gr.Slider(minimum=0.1, maximum=1.0, value=BASE_SIMILARITY_THRESHOLD, step=0.1, label="Base Similarity Threshold")
|
| 55 |
+
followup_sim = gr.Slider(minimum=0.1, maximum=1.0, value=FOLLOWUP_SIMILARITY_THRESHOLD, step=0.1, label="Similarity Threshold with follow-up questions (multi-turn)")
|
| 56 |
+
|
| 57 |
+
base_sim.release(rag_service.on_sim_changed, [context_state, base_sim, followup_sim], context_state)
|
| 58 |
+
followup_sim.release(rag_service.on_sim_changed, [context_state, base_sim, followup_sim], context_state)
|
| 59 |
+
|
| 60 |
+
gr.HTML("""
|
| 61 |
+
<div class="disclaimer">
|
| 62 |
+
<p><strong>Disclaimer:</strong></p>
|
| 63 |
+
<ul style="list-style: none; padding: 0;">
|
| 64 |
+
<li>This is a fan-made personal demonstration and not affiliated with any organization.<br>The bot is for entertainment purposes only.</li>
|
| 65 |
+
<li>Factual information is sourced from the <a href="https://hollowknight.wiki" target="_blank">Hollow Knight Wiki</a>.<br>Content is available under <a href="https://creativecommons.org/licenses/by-sa/3.0/" target="_blank">Commons Attribution-ShareAlike</a> unless otherwise noted.</li>
|
| 66 |
+
<li>Built by <a href="https://huggingface.co/bebechien" target="_blank">bebechien</a> with a 💖 for the world of Hollow Knight.</li>
|
| 67 |
+
</ul>
|
| 68 |
+
</div>
|
| 69 |
+
""")
|
| 70 |
+
|
| 71 |
+
return demo
|
web_helper.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
from bs4 import BeautifulSoup
|
| 3 |
+
from html_to_markdown import convert_to_markdown
|
| 4 |
+
|
| 5 |
+
# --- Static Helper Functions (Web Scraping) ---
|
| 6 |
+
|
| 7 |
+
@staticmethod
|
| 8 |
+
def get_html(url: str) -> str:
|
| 9 |
+
"""Fetches HTML content from a URL."""
|
| 10 |
+
try:
|
| 11 |
+
response = requests.get(url)
|
| 12 |
+
response.raise_for_status() # Raises an HTTPError for bad responses (4xx or 5xx)
|
| 13 |
+
return response.text
|
| 14 |
+
except requests.exceptions.RequestException as e:
|
| 15 |
+
print(f"Error fetching {url}: {e}")
|
| 16 |
+
return ""
|
| 17 |
+
|
| 18 |
+
@staticmethod
|
| 19 |
+
def find_wiki_links(html_content: str) -> list[str]:
|
| 20 |
+
"""Parses HTML to find all boss links within the 'mw-pages' div."""
|
| 21 |
+
soup = BeautifulSoup(html_content, 'html.parser')
|
| 22 |
+
mw_pages_div = soup.find('div', id='mw-pages')
|
| 23 |
+
if not mw_pages_div:
|
| 24 |
+
return []
|
| 25 |
+
return [a['href'] for a in mw_pages_div.find_all('a', href=True)]
|
| 26 |
+
|
| 27 |
+
@staticmethod
|
| 28 |
+
def get_markdown_from_html(html: str) -> str:
|
| 29 |
+
if not html:
|
| 30 |
+
return ""
|
| 31 |
+
|
| 32 |
+
soup = BeautifulSoup(html, 'html.parser')
|
| 33 |
+
return convert_to_markdown(soup)
|
| 34 |
+
|
| 35 |
+
@staticmethod
|
| 36 |
+
def get_markdown_from_url(url: str) -> str:
|
| 37 |
+
return get_markdown_from_html(get_html(url))
|