Spaces:
Sleeping
feat: Add 3 Korean LLM models and update dependencies
Browse filesMajor Features:
- Add EXAONE 3.5 7.8B Instruct (파라미터 대비 최고 효율)
- Add EXAONE 3.5 2.4B Instruct (초경량, 빠른 응답)
- Add Llama-3 Open-Ko 8B (Llama 3 생태계)
- Expand model selection from 10 to 13 models (10 Public + 3 Gated)
Model Management Improvements:
- Implement lazy loading: models load on first use, not startup
- Add cache detection with check_model_cached() function
- Display cache status in UI (cached vs. downloading)
- Add .env file loading with python-dotenv
- Support gated models with HF_TOKEN authentication
- Add detailed logging for model loading process
Dependency Updates:
- gradio: 5.9.1 → 5.49.1
- transformers: 4.46.0 → 4.57.1
- torch: 2.1.0 → 2.9.0
- safetensors: 0.4.5 → 0.6.2
- Add python-dotenv==1.0.0 for .env file support
- Remove unused dependencies (accelerate, spaces)
Technical Changes:
- Implement loaded_model_name tracking for lazy loading
- Add huggingface_hub.scan_cache_dir() for cache detection
- Update UI messages to clarify cache vs download status
- Change deprecated torch_dtype to dtype parameter
- All 13 models verified on Hugging Face
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <[email protected]>
- app.py +239 -44
- requirements.txt +7 -6
|
@@ -15,33 +15,180 @@ except ImportError:
|
|
| 15 |
import os
|
| 16 |
import gradio as gr
|
| 17 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 18 |
import torch
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
# Get HF token from environment
|
| 21 |
HF_TOKEN = os.getenv("HF_TOKEN", None)
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
model = None
|
| 32 |
tokenizer = None
|
| 33 |
|
| 34 |
|
| 35 |
-
def
|
| 36 |
-
"""
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
# Load tokenizer
|
|
|
|
| 43 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 44 |
-
|
| 45 |
token=HF_TOKEN,
|
| 46 |
trust_remote_code=True,
|
| 47 |
)
|
|
@@ -54,12 +201,16 @@ def load_model_once():
|
|
| 54 |
print(f"📍 Using device: {device}")
|
| 55 |
|
| 56 |
# Load model with appropriate settings
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
if device == "cuda":
|
| 58 |
# GPU available (CPU Upgrade with GPU or ZeroGPU)
|
| 59 |
model = AutoModelForCausalLM.from_pretrained(
|
| 60 |
-
|
| 61 |
token=HF_TOKEN,
|
| 62 |
-
|
| 63 |
low_cpu_mem_usage=True,
|
| 64 |
trust_remote_code=True,
|
| 65 |
device_map="auto",
|
|
@@ -67,16 +218,20 @@ def load_model_once():
|
|
| 67 |
else:
|
| 68 |
# CPU only
|
| 69 |
model = AutoModelForCausalLM.from_pretrained(
|
| 70 |
-
|
| 71 |
token=HF_TOKEN,
|
| 72 |
-
|
| 73 |
low_cpu_mem_usage=True,
|
| 74 |
trust_remote_code=True,
|
| 75 |
)
|
| 76 |
model.to(device)
|
| 77 |
|
| 78 |
model.eval()
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
return model, tokenizer
|
| 82 |
|
|
@@ -117,12 +272,15 @@ def generate_response_impl(message, history):
|
|
| 117 |
inputs = encoded['input_ids'].to(device)
|
| 118 |
attention_mask = encoded['attention_mask'].to(device)
|
| 119 |
|
|
|
|
|
|
|
|
|
|
| 120 |
# Generate response
|
| 121 |
with torch.no_grad():
|
| 122 |
outputs = current_model.generate(
|
| 123 |
inputs,
|
| 124 |
attention_mask=attention_mask,
|
| 125 |
-
max_new_tokens=
|
| 126 |
temperature=0.7,
|
| 127 |
top_p=0.9,
|
| 128 |
do_sample=True,
|
|
@@ -180,37 +338,44 @@ hardware_info = "NVIDIA H200 (ZeroGPU)" if ZEROGPU_AVAILABLE else "CPU Upgrade (
|
|
| 180 |
print(f"✅ App initialized - Hardware: {hardware_info}")
|
| 181 |
|
| 182 |
# Create Gradio interface
|
| 183 |
-
with gr.Blocks(title="🤖
|
| 184 |
# Dynamic header based on hardware
|
| 185 |
if ZEROGPU_AVAILABLE:
|
| 186 |
header = """
|
| 187 |
-
# 🤖
|
| 188 |
|
| 189 |
-
**모델**: Llama-2-Ko 7B (한글 대화형 모델)
|
| 190 |
**하드웨어**: NVIDIA H200 (ZeroGPU - 자동 할당)
|
| 191 |
|
| 192 |
**특징**:
|
| 193 |
- ⚡ GPU 가속으로 빠른 응답 (3-5초)
|
| 194 |
-
-
|
| 195 |
-
- 🔄
|
| 196 |
- 💰 PRO 구독 시 하루 25분 무료 사용
|
| 197 |
"""
|
| 198 |
else:
|
| 199 |
header = """
|
| 200 |
-
# 🤖
|
| 201 |
|
| 202 |
-
**모델**: Llama-2-Ko 7B (한글 대화형 모델)
|
| 203 |
**하드웨어**: CPU Upgrade (8 vCPU / 32 GB RAM)
|
| 204 |
|
| 205 |
**특징**:
|
| 206 |
-
-
|
| 207 |
-
- 🔄
|
| 208 |
- ⏳ CPU 환경이므로 응답이 다소 느립니다 (30초~1분)
|
| 209 |
- 💰 시간당 $0.03 (월 약 $22)
|
| 210 |
"""
|
| 211 |
|
| 212 |
gr.Markdown(header)
|
| 213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
chatbot = gr.Chatbot(height=400, type="messages", show_label=False)
|
| 215 |
|
| 216 |
with gr.Row():
|
|
@@ -223,19 +388,47 @@ with gr.Blocks(title="🤖 Llama-2-Ko Chatbot") as demo:
|
|
| 223 |
|
| 224 |
clear = gr.Button("🗑️ 대화 초기화", size="sm")
|
| 225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
def submit(message, history):
|
|
|
|
|
|
|
| 227 |
# Immediately show user message
|
| 228 |
updated_history = history + [{"role": "user", "content": message}]
|
| 229 |
yield updated_history, ""
|
| 230 |
|
| 231 |
-
#
|
| 232 |
-
|
| 233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
-
# Generate and add bot response
|
| 236 |
final_history = chat_wrapper(message, history)
|
| 237 |
yield final_history, ""
|
| 238 |
|
|
|
|
|
|
|
| 239 |
btn.click(submit, [msg, chatbot], [chatbot, msg])
|
| 240 |
msg.submit(submit, [msg, chatbot], [chatbot, msg])
|
| 241 |
clear.click(lambda: [], outputs=chatbot)
|
|
@@ -245,29 +438,31 @@ with gr.Blocks(title="🤖 Llama-2-Ko Chatbot") as demo:
|
|
| 245 |
footer = """
|
| 246 |
---
|
| 247 |
**참고사항 (ZeroGPU 모드)**:
|
| 248 |
-
-
|
| 249 |
-
-
|
| 250 |
-
-
|
| 251 |
-
-
|
|
|
|
| 252 |
|
| 253 |
**테스트 예시**:
|
| 254 |
- "안녕하세요"
|
| 255 |
- "인공지능에 대해 설명해주세요"
|
| 256 |
-
- "
|
| 257 |
"""
|
| 258 |
else:
|
| 259 |
footer = """
|
| 260 |
---
|
| 261 |
**참고사항 (CPU Upgrade 모드)**:
|
| 262 |
-
-
|
| 263 |
-
-
|
| 264 |
-
-
|
| 265 |
-
-
|
|
|
|
| 266 |
|
| 267 |
**테스트 예시**:
|
| 268 |
- "안녕하세요"
|
| 269 |
- "인공지능에 대해 설명해주세요"
|
| 270 |
-
- "
|
| 271 |
"""
|
| 272 |
|
| 273 |
gr.Markdown(footer)
|
|
|
|
| 15 |
import os
|
| 16 |
import gradio as gr
|
| 17 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 18 |
+
from huggingface_hub import snapshot_download
|
| 19 |
import torch
|
| 20 |
|
| 21 |
+
# Load environment variables from .env file
|
| 22 |
+
try:
|
| 23 |
+
from dotenv import load_dotenv
|
| 24 |
+
load_dotenv() # Load .env file into environment
|
| 25 |
+
print("✅ .env file loaded")
|
| 26 |
+
except ImportError:
|
| 27 |
+
print("⚠️ python-dotenv not installed, using system environment variables only")
|
| 28 |
+
|
| 29 |
# Get HF token from environment
|
| 30 |
HF_TOKEN = os.getenv("HF_TOKEN", None)
|
| 31 |
+
if HF_TOKEN:
|
| 32 |
+
print(f"✅ HF_TOKEN loaded (length: {len(HF_TOKEN)} chars)")
|
| 33 |
+
else:
|
| 34 |
+
print("⚠️ HF_TOKEN not found in environment - some models may not be accessible")
|
| 35 |
+
|
| 36 |
+
# Model configurations (10 Public + 3 Gated models = 13 total)
|
| 37 |
+
# Note: Gated models require HF access approval at https://huggingface.co/[model-name]
|
| 38 |
+
MODEL_CONFIGS = [
|
| 39 |
+
{
|
| 40 |
+
"MODEL_NAME": "LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct",
|
| 41 |
+
"MODEL_CONFIG": {
|
| 42 |
+
"name": "EXAONE 3.5 7.8B Instruct ⭐ (파라미터 대비 최고 효율)",
|
| 43 |
+
"max_length": 150,
|
| 44 |
+
},
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"MODEL_NAME": "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct",
|
| 48 |
+
"MODEL_CONFIG": {
|
| 49 |
+
"name": "EXAONE 3.5 2.4B Instruct ⚡ (초경량, 빠른 응답)",
|
| 50 |
+
"max_length": 150,
|
| 51 |
+
},
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"MODEL_NAME": "beomi/Llama-3-Open-Ko-8B",
|
| 55 |
+
"MODEL_CONFIG": {
|
| 56 |
+
"name": "Llama-3 Open-Ko 8B 🔥 (Llama 3 생태계)",
|
| 57 |
+
"max_length": 150,
|
| 58 |
+
},
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"MODEL_NAME": "Qwen/Qwen2.5-7B-Instruct",
|
| 62 |
+
"MODEL_CONFIG": {
|
| 63 |
+
"name": "Qwen2.5 7B Instruct (한글 지시응답 우수)",
|
| 64 |
+
"max_length": 150,
|
| 65 |
+
},
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"MODEL_NAME": "Qwen/Qwen2.5-14B-Instruct",
|
| 69 |
+
"MODEL_CONFIG": {
|
| 70 |
+
"name": "Qwen2.5 14B Instruct (다국어·한글 강점, 여유 GPU 권장)",
|
| 71 |
+
"max_length": 150,
|
| 72 |
+
},
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"MODEL_NAME": "meta-llama/Llama-3.1-8B-Instruct",
|
| 76 |
+
"MODEL_CONFIG": {
|
| 77 |
+
"name": "Llama 3.1 8B Instruct 🔒 (커뮤니티 Ko 튜닝 활발, 승인 필요)",
|
| 78 |
+
"max_length": 150,
|
| 79 |
+
},
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"MODEL_NAME": "meta-llama/Llama-3.1-70B-Instruct",
|
| 83 |
+
"MODEL_CONFIG": {
|
| 84 |
+
"name": "Llama 3.1 70B Instruct 🔒 (대규모·한글 품질 우수, 승인 필요)",
|
| 85 |
+
"max_length": 150,
|
| 86 |
+
},
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"MODEL_NAME": "01-ai/Yi-1.5-9B-Chat",
|
| 90 |
+
"MODEL_CONFIG": {
|
| 91 |
+
"name": "Yi 1.5 9B Chat (다국어/한글 안정적 대화)",
|
| 92 |
+
"max_length": 150,
|
| 93 |
+
},
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"MODEL_NAME": "01-ai/Yi-1.5-34B-Chat",
|
| 97 |
+
"MODEL_CONFIG": {
|
| 98 |
+
"name": "Yi 1.5 34B Chat (긴 문맥·한글 생성 강점)",
|
| 99 |
+
"max_length": 150,
|
| 100 |
+
},
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"MODEL_NAME": "mistralai/Mistral-7B-Instruct-v0.3",
|
| 104 |
+
"MODEL_CONFIG": {
|
| 105 |
+
"name": "Mistral 7B Instruct v0.3 (경량·한글 커뮤니티 튜닝 多)",
|
| 106 |
+
"max_length": 150,
|
| 107 |
+
},
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"MODEL_NAME": "upstage/SOLAR-10.7B-Instruct-v1.0",
|
| 111 |
+
"MODEL_CONFIG": {
|
| 112 |
+
"name": "Solar 10.7B Instruct v1.0 (한국어 강점, 실전 지시응답)",
|
| 113 |
+
"max_length": 150,
|
| 114 |
+
},
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"MODEL_NAME": "EleutherAI/polyglot-ko-5.8b",
|
| 118 |
+
"MODEL_CONFIG": {
|
| 119 |
+
"name": "Polyglot-Ko 5.8B (한국어 중심 베이스)",
|
| 120 |
+
"max_length": 150,
|
| 121 |
+
},
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"MODEL_NAME": "CohereForAI/aya-23-8B",
|
| 125 |
+
"MODEL_CONFIG": {
|
| 126 |
+
"name": "Aya-23 8B 🔒 (다국어·한국어 지원 양호, 승인 필요)",
|
| 127 |
+
"max_length": 150,
|
| 128 |
+
},
|
| 129 |
+
},
|
| 130 |
+
]
|
| 131 |
+
|
| 132 |
+
# Default model
|
| 133 |
+
current_model_index = 0
|
| 134 |
+
loaded_model_name = None # Track which model is currently loaded
|
| 135 |
+
|
| 136 |
+
# Global model cache
|
| 137 |
model = None
|
| 138 |
tokenizer = None
|
| 139 |
|
| 140 |
|
| 141 |
+
def check_model_cached(model_name):
|
| 142 |
+
"""Check if model is already downloaded in HF cache"""
|
| 143 |
+
try:
|
| 144 |
+
from huggingface_hub import scan_cache_dir
|
| 145 |
+
cache_info = scan_cache_dir()
|
| 146 |
+
|
| 147 |
+
# Check if model exists in cache
|
| 148 |
+
for repo in cache_info.repos:
|
| 149 |
+
if repo.repo_id == model_name:
|
| 150 |
+
return True
|
| 151 |
+
return False
|
| 152 |
+
except Exception as e:
|
| 153 |
+
# If unable to check cache, assume not cached
|
| 154 |
+
print(f" ⚠️ Unable to check cache: {e}")
|
| 155 |
+
return False
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def load_model_once(model_index=None):
|
| 159 |
+
"""Load model and tokenizer based on selected index (lazy loading)"""
|
| 160 |
+
global model, tokenizer, current_model_index, loaded_model_name
|
| 161 |
+
|
| 162 |
+
if model_index is None:
|
| 163 |
+
model_index = current_model_index
|
| 164 |
|
| 165 |
+
# Get model config
|
| 166 |
+
model_name = MODEL_CONFIGS[model_index]["MODEL_NAME"]
|
| 167 |
+
|
| 168 |
+
# Check if we need to reload (different model or not loaded yet)
|
| 169 |
+
if loaded_model_name != model_name:
|
| 170 |
+
print(f"🔄 Loading model: {model_name}")
|
| 171 |
+
print(f" Previous model: {loaded_model_name or 'None'}")
|
| 172 |
+
|
| 173 |
+
# Check if model is already cached
|
| 174 |
+
is_cached = check_model_cached(model_name)
|
| 175 |
+
if is_cached:
|
| 176 |
+
print(f" ✅ Model found in cache, loading from disk...")
|
| 177 |
+
else:
|
| 178 |
+
print(f" 📥 Model not in cache, will download (~4-14GB depending on model)...")
|
| 179 |
+
|
| 180 |
+
# Clear previous model
|
| 181 |
+
if model is not None:
|
| 182 |
+
print(f" 🗑️ Unloading previous model from memory...")
|
| 183 |
+
del model
|
| 184 |
+
del tokenizer
|
| 185 |
+
if torch.cuda.is_available():
|
| 186 |
+
torch.cuda.empty_cache()
|
| 187 |
|
| 188 |
# Load tokenizer
|
| 189 |
+
print(f" 📝 Loading tokenizer...")
|
| 190 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 191 |
+
model_name,
|
| 192 |
token=HF_TOKEN,
|
| 193 |
trust_remote_code=True,
|
| 194 |
)
|
|
|
|
| 201 |
print(f"📍 Using device: {device}")
|
| 202 |
|
| 203 |
# Load model with appropriate settings
|
| 204 |
+
if is_cached:
|
| 205 |
+
print(f" 📀 Loading model from disk cache (15-30 seconds)...")
|
| 206 |
+
else:
|
| 207 |
+
print(f" 🌐 Downloading model from network (5-20 minutes, first time only)...")
|
| 208 |
if device == "cuda":
|
| 209 |
# GPU available (CPU Upgrade with GPU or ZeroGPU)
|
| 210 |
model = AutoModelForCausalLM.from_pretrained(
|
| 211 |
+
model_name,
|
| 212 |
token=HF_TOKEN,
|
| 213 |
+
dtype=torch.float16, # Use float16 for GPU
|
| 214 |
low_cpu_mem_usage=True,
|
| 215 |
trust_remote_code=True,
|
| 216 |
device_map="auto",
|
|
|
|
| 218 |
else:
|
| 219 |
# CPU only
|
| 220 |
model = AutoModelForCausalLM.from_pretrained(
|
| 221 |
+
model_name,
|
| 222 |
token=HF_TOKEN,
|
| 223 |
+
dtype=torch.float32, # Use float32 for CPU
|
| 224 |
low_cpu_mem_usage=True,
|
| 225 |
trust_remote_code=True,
|
| 226 |
)
|
| 227 |
model.to(device)
|
| 228 |
|
| 229 |
model.eval()
|
| 230 |
+
current_model_index = model_index
|
| 231 |
+
loaded_model_name = model_name
|
| 232 |
+
print(f"✅ Model {model_name} loaded successfully")
|
| 233 |
+
else:
|
| 234 |
+
print(f"ℹ️ Model {model_name} already loaded, reusing...")
|
| 235 |
|
| 236 |
return model, tokenizer
|
| 237 |
|
|
|
|
| 272 |
inputs = encoded['input_ids'].to(device)
|
| 273 |
attention_mask = encoded['attention_mask'].to(device)
|
| 274 |
|
| 275 |
+
# Get current model config
|
| 276 |
+
model_config = MODEL_CONFIGS[current_model_index]["MODEL_CONFIG"]
|
| 277 |
+
|
| 278 |
# Generate response
|
| 279 |
with torch.no_grad():
|
| 280 |
outputs = current_model.generate(
|
| 281 |
inputs,
|
| 282 |
attention_mask=attention_mask,
|
| 283 |
+
max_new_tokens=model_config["max_length"],
|
| 284 |
temperature=0.7,
|
| 285 |
top_p=0.9,
|
| 286 |
do_sample=True,
|
|
|
|
| 338 |
print(f"✅ App initialized - Hardware: {hardware_info}")
|
| 339 |
|
| 340 |
# Create Gradio interface
|
| 341 |
+
with gr.Blocks(title="🤖 Multi-Model Chatbot") as demo:
|
| 342 |
# Dynamic header based on hardware
|
| 343 |
if ZEROGPU_AVAILABLE:
|
| 344 |
header = """
|
| 345 |
+
# 🤖 다중 모델 챗봇 (ZeroGPU)
|
| 346 |
|
|
|
|
| 347 |
**하드웨어**: NVIDIA H200 (ZeroGPU - 자동 할당)
|
| 348 |
|
| 349 |
**특징**:
|
| 350 |
- ⚡ GPU 가속으로 빠른 응답 (3-5초)
|
| 351 |
+
- 🎯 10가지 한글 최적화 모델 선택 가능
|
| 352 |
+
- 🔄 모델 전환 시 자동 재로딩
|
| 353 |
- 💰 PRO 구독 시 하루 25분 무료 사용
|
| 354 |
"""
|
| 355 |
else:
|
| 356 |
header = """
|
| 357 |
+
# 🤖 다중 모델 챗봇 (CPU Upgrade)
|
| 358 |
|
|
|
|
| 359 |
**하드웨어**: CPU Upgrade (8 vCPU / 32 GB RAM)
|
| 360 |
|
| 361 |
**특징**:
|
| 362 |
+
- 🎯 10가지 한글 최적화 모델 선택 가능
|
| 363 |
+
- 🔄 ��델 전환 시 자동 재로딩
|
| 364 |
- ⏳ CPU 환경이므로 응답이 다소 느립니다 (30초~1분)
|
| 365 |
- 💰 시간당 $0.03 (월 약 $22)
|
| 366 |
"""
|
| 367 |
|
| 368 |
gr.Markdown(header)
|
| 369 |
|
| 370 |
+
# Model selector
|
| 371 |
+
model_choices = [f"{cfg['MODEL_CONFIG']['name']}" for cfg in MODEL_CONFIGS]
|
| 372 |
+
model_dropdown = gr.Dropdown(
|
| 373 |
+
choices=model_choices,
|
| 374 |
+
value=model_choices[0],
|
| 375 |
+
label="🤖 모델 선택",
|
| 376 |
+
interactive=True,
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
chatbot = gr.Chatbot(height=400, type="messages", show_label=False)
|
| 380 |
|
| 381 |
with gr.Row():
|
|
|
|
| 388 |
|
| 389 |
clear = gr.Button("🗑️ 대화 초기화", size="sm")
|
| 390 |
|
| 391 |
+
def change_model(selected_model):
|
| 392 |
+
"""Handle model change"""
|
| 393 |
+
global current_model_index
|
| 394 |
+
# Find index of selected model
|
| 395 |
+
for idx, cfg in enumerate(MODEL_CONFIGS):
|
| 396 |
+
if cfg['MODEL_CONFIG']['name'] == selected_model:
|
| 397 |
+
current_model_index = idx
|
| 398 |
+
break
|
| 399 |
+
# Clear chat history when changing model
|
| 400 |
+
return []
|
| 401 |
+
|
| 402 |
def submit(message, history):
|
| 403 |
+
global loaded_model_name, current_model_index
|
| 404 |
+
|
| 405 |
# Immediately show user message
|
| 406 |
updated_history = history + [{"role": "user", "content": message}]
|
| 407 |
yield updated_history, ""
|
| 408 |
|
| 409 |
+
# Check if model needs to be loaded
|
| 410 |
+
selected_model_name = MODEL_CONFIGS[current_model_index]["MODEL_NAME"]
|
| 411 |
+
if loaded_model_name != selected_model_name:
|
| 412 |
+
# Check if model is cached
|
| 413 |
+
is_cached = check_model_cached(selected_model_name)
|
| 414 |
+
if is_cached:
|
| 415 |
+
# Model is cached, just loading from disk
|
| 416 |
+
loading_history = updated_history + [{"role": "assistant", "content": "💾 캐시된 모델 디스크에서 로딩 중... (15-30초, 다운로드 안 함)"}]
|
| 417 |
+
else:
|
| 418 |
+
# Model needs to be downloaded
|
| 419 |
+
loading_history = updated_history + [{"role": "assistant", "content": "📥 모델 다운로드 시작... (4-14GB, 첫 사용 시 5-20분 소요)"}]
|
| 420 |
+
yield loading_history, ""
|
| 421 |
+
else:
|
| 422 |
+
# Show "thinking" indicator
|
| 423 |
+
thinking_history = updated_history + [{"role": "assistant", "content": "🤔 응답 생성 중..."}]
|
| 424 |
+
yield thinking_history, ""
|
| 425 |
|
| 426 |
+
# Generate and add bot response (this will load model if needed)
|
| 427 |
final_history = chat_wrapper(message, history)
|
| 428 |
yield final_history, ""
|
| 429 |
|
| 430 |
+
# Event handlers
|
| 431 |
+
model_dropdown.change(change_model, inputs=[model_dropdown], outputs=[chatbot])
|
| 432 |
btn.click(submit, [msg, chatbot], [chatbot, msg])
|
| 433 |
msg.submit(submit, [msg, chatbot], [chatbot, msg])
|
| 434 |
clear.click(lambda: [], outputs=chatbot)
|
|
|
|
| 438 |
footer = """
|
| 439 |
---
|
| 440 |
**참고사항 (ZeroGPU 모드)**:
|
| 441 |
+
- 🤖 10가지 모델 중 선택 가능 (드롭다운에서 선택)
|
| 442 |
+
- ⚡ ZeroGPU는 요청 시 자동으로 GPU를 할당합니다
|
| 443 |
+
- 💰 PRO 구독자는 하루 25분 무료 사용
|
| 444 |
+
- 🔄 모델 변경 시 대화 내역이 초기화됩니다
|
| 445 |
+
- ⏱️ 첫 응답은 모델 로딩 시간 포함 (~10-15초)
|
| 446 |
|
| 447 |
**테스트 예시**:
|
| 448 |
- "안녕하세요"
|
| 449 |
- "인공지능에 대해 설명해주세요"
|
| 450 |
+
- "한국의 수도는 어디인가요?"
|
| 451 |
"""
|
| 452 |
else:
|
| 453 |
footer = """
|
| 454 |
---
|
| 455 |
**참고사항 (CPU Upgrade 모드)**:
|
| 456 |
+
- 🤖 10가지 모델 중 선택 가능 (드롭다운에서 선택)
|
| 457 |
+
- 🔄 모델 변경 시 대화 내역이 초기화됩니다
|
| 458 |
+
- ⏳ CPU 환경이므로 응답이 느립니다 (30초~1분)
|
| 459 |
+
- ⏱️ 첫 응답은 모델 로딩 시간 포함 (~1-2분)
|
| 460 |
+
- 💰 24시간 무제한 사용 (시간당 $0.03)
|
| 461 |
|
| 462 |
**테스트 예시**:
|
| 463 |
- "안녕하세요"
|
| 464 |
- "인공지능에 대해 설명해주세요"
|
| 465 |
+
- "한국의 수도는 어디인가요?"
|
| 466 |
"""
|
| 467 |
|
| 468 |
gr.Markdown(footer)
|
|
@@ -1,6 +1,7 @@
|
|
| 1 |
-
gradio==5.
|
| 2 |
-
transformers==4.
|
| 3 |
-
torch==2.
|
| 4 |
-
safetensors==0.
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
| 1 |
+
gradio==5.49.1
|
| 2 |
+
transformers==4.57.1
|
| 3 |
+
torch==2.9.0
|
| 4 |
+
safetensors==0.6.2
|
| 5 |
+
sentencepiece==0.2.0
|
| 6 |
+
protobuf==4.25.1
|
| 7 |
+
python-dotenv==1.0.0
|