Spaces:
Running
Running
CUDA: add softmax broadcast (llama/14475)
Browse files* CUDA: add softmax broadcast
* Pass by const ref
* Review: Use blockDims for indexing, remove designated initializers
* Add TODO for noncontigous input/output
- ggml/src/ggml-cuda/ggml-cuda.cu +1 -7
- ggml/src/ggml-cuda/softmax.cu +91 -28
ggml/src/ggml-cuda/ggml-cuda.cu
CHANGED
|
@@ -3329,13 +3329,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
|
| 3329 |
case GGML_OP_DIAG_MASK_INF:
|
| 3330 |
return true;
|
| 3331 |
case GGML_OP_SOFT_MAX:
|
| 3332 |
-
|
| 3333 |
-
if (op->src[0]->ne[3] != 1) {
|
| 3334 |
-
return false;
|
| 3335 |
-
}
|
| 3336 |
-
// TODO: support broadcast
|
| 3337 |
-
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
|
| 3338 |
-
return !op->src[1] || (op->src[1]->ne[2] == 1 && op->src[1]->ne[3] == 1);
|
| 3339 |
case GGML_OP_SOFT_MAX_BACK: {
|
| 3340 |
float max_bias = 0.0f;
|
| 3341 |
memcpy(&max_bias, (const float *) op->op_params + 1, sizeof(float));
|
|
|
|
| 3329 |
case GGML_OP_DIAG_MASK_INF:
|
| 3330 |
return true;
|
| 3331 |
case GGML_OP_SOFT_MAX:
|
| 3332 |
+
return true;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3333 |
case GGML_OP_SOFT_MAX_BACK: {
|
| 3334 |
float max_bias = 0.0f;
|
| 3335 |
memcpy(&max_bias, (const float *) op->op_params + 1, sizeof(float));
|
ggml/src/ggml-cuda/softmax.cu
CHANGED
|
@@ -13,6 +13,29 @@ __device__ float __forceinline__ t2f32<half>(half val) {
|
|
| 13 |
return __half2float(val);
|
| 14 |
}
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
// When ncols_template == 0 the bounds for the loops in this function are not known and can't be unrolled.
|
| 17 |
// As we want to keep pragma unroll for all other cases we supress the clang transformation warning here.
|
| 18 |
#ifdef __clang__
|
|
@@ -21,16 +44,24 @@ __device__ float __forceinline__ t2f32<half>(half val) {
|
|
| 21 |
#endif // __clang__
|
| 22 |
template <bool use_shared, int ncols_template, int block_size_template, typename T>
|
| 23 |
static __global__ void soft_max_f32(
|
| 24 |
-
const float * x, const T * mask, float * dst, const
|
| 25 |
-
|
| 26 |
-
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
|
| 27 |
|
| 28 |
const int tid = threadIdx.x;
|
| 29 |
-
|
| 30 |
-
const
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
x += int64_t(rowx)*ncols;
|
| 33 |
-
mask +=
|
| 34 |
dst += int64_t(rowx)*ncols;
|
| 35 |
|
| 36 |
const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
|
|
@@ -38,7 +69,7 @@ static __global__ void soft_max_f32(
|
|
| 38 |
const int warp_id = threadIdx.x / WARP_SIZE;
|
| 39 |
const int lane_id = threadIdx.x % WARP_SIZE;
|
| 40 |
|
| 41 |
-
const float slope = get_alibi_slope(max_bias,
|
| 42 |
|
| 43 |
extern __shared__ float data_soft_max_f32[];
|
| 44 |
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
|
|
@@ -55,7 +86,7 @@ static __global__ void soft_max_f32(
|
|
| 55 |
break;
|
| 56 |
}
|
| 57 |
|
| 58 |
-
const float val = x[col]*scale + (mask ? slope*t2f32(mask[col]) : 0.0f);
|
| 59 |
|
| 60 |
vals[col] = val;
|
| 61 |
max_val = max(max_val, val);
|
|
@@ -151,63 +182,60 @@ static __global__ void soft_max_back_f32(
|
|
| 151 |
}
|
| 152 |
|
| 153 |
template<typename T>
|
| 154 |
-
static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, const
|
| 155 |
int nth = WARP_SIZE;
|
|
|
|
|
|
|
| 156 |
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
|
| 157 |
const dim3 block_dims(nth, 1, 1);
|
| 158 |
-
const dim3 block_nums(
|
| 159 |
const size_t nbytes_shared = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
|
| 160 |
static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
|
| 161 |
|
| 162 |
-
const uint32_t n_head = nrows_x/nrows_y;
|
| 163 |
-
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
| 164 |
-
|
| 165 |
-
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
| 166 |
-
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
| 167 |
|
| 168 |
// FIXME: this limit could be raised by ~2-4x on Ampere or newer
|
| 169 |
if (nbytes_shared < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
|
| 170 |
switch (ncols_x) {
|
| 171 |
case 32:
|
| 172 |
soft_max_f32<true, 32, 32><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 173 |
-
(x, mask, dst,
|
| 174 |
break;
|
| 175 |
case 64:
|
| 176 |
soft_max_f32<true, 64, 64><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 177 |
-
(x, mask, dst,
|
| 178 |
break;
|
| 179 |
case 128:
|
| 180 |
soft_max_f32<true, 128, 128><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 181 |
-
(x, mask, dst,
|
| 182 |
break;
|
| 183 |
case 256:
|
| 184 |
soft_max_f32<true, 256, 256><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 185 |
-
(x, mask, dst,
|
| 186 |
break;
|
| 187 |
case 512:
|
| 188 |
soft_max_f32<true, 512, 512><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 189 |
-
(x, mask, dst,
|
| 190 |
break;
|
| 191 |
case 1024:
|
| 192 |
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 193 |
-
(x, mask, dst,
|
| 194 |
break;
|
| 195 |
case 2048:
|
| 196 |
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 197 |
-
(x, mask, dst,
|
| 198 |
break;
|
| 199 |
case 4096:
|
| 200 |
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 201 |
-
(x, mask, dst,
|
| 202 |
break;
|
| 203 |
default:
|
| 204 |
soft_max_f32<true, 0, 0><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 205 |
-
(x, mask, dst,
|
| 206 |
break;
|
| 207 |
}
|
| 208 |
} else {
|
| 209 |
const size_t nbytes_shared_low = WARP_SIZE*sizeof(float);
|
| 210 |
-
soft_max_f32<false, 0, 0><<<block_nums, block_dims, nbytes_shared_low, stream>>>(x, mask, dst,
|
| 211 |
}
|
| 212 |
}
|
| 213 |
|
|
@@ -235,10 +263,11 @@ void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
| 235 |
|
| 236 |
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
|
| 237 |
|
| 238 |
-
const int64_t ne00 = src0->ne[0];
|
| 239 |
const int64_t nrows_x = ggml_nrows(src0);
|
| 240 |
const int64_t nrows_y = src0->ne[1];
|
| 241 |
|
|
|
|
|
|
|
| 242 |
float scale = 1.0f;
|
| 243 |
float max_bias = 0.0f;
|
| 244 |
|
|
@@ -247,10 +276,44 @@ void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
| 247 |
|
| 248 |
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
|
| 249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
if (use_f16) {
|
| 251 |
-
soft_max_f32_cuda(src0_d, (const half *) src1_d, dst_d,
|
| 252 |
} else {
|
| 253 |
-
soft_max_f32_cuda(src0_d, (const float *) src1_d, dst_d,
|
| 254 |
}
|
| 255 |
}
|
| 256 |
|
|
|
|
| 13 |
return __half2float(val);
|
| 14 |
}
|
| 15 |
|
| 16 |
+
struct soft_max_params {
|
| 17 |
+
|
| 18 |
+
int64_t nheads;
|
| 19 |
+
uint32_t n_head_log2;
|
| 20 |
+
int64_t ncols;
|
| 21 |
+
int64_t nrows_x;
|
| 22 |
+
int64_t nrows_y;
|
| 23 |
+
int64_t ne00;
|
| 24 |
+
int64_t ne01;
|
| 25 |
+
int64_t ne02;
|
| 26 |
+
int64_t ne03;
|
| 27 |
+
int64_t nb11;
|
| 28 |
+
int64_t nb12;
|
| 29 |
+
int64_t nb13;
|
| 30 |
+
|
| 31 |
+
int64_t ne12;
|
| 32 |
+
int64_t ne13;
|
| 33 |
+
float scale;
|
| 34 |
+
float max_bias;
|
| 35 |
+
float m0;
|
| 36 |
+
float m1;
|
| 37 |
+
};
|
| 38 |
+
|
| 39 |
// When ncols_template == 0 the bounds for the loops in this function are not known and can't be unrolled.
|
| 40 |
// As we want to keep pragma unroll for all other cases we supress the clang transformation warning here.
|
| 41 |
#ifdef __clang__
|
|
|
|
| 44 |
#endif // __clang__
|
| 45 |
template <bool use_shared, int ncols_template, int block_size_template, typename T>
|
| 46 |
static __global__ void soft_max_f32(
|
| 47 |
+
const float * x, const T * mask, float * dst, const soft_max_params p) {
|
| 48 |
+
const int ncols = ncols_template == 0 ? p.ncols : ncols_template;
|
|
|
|
| 49 |
|
| 50 |
const int tid = threadIdx.x;
|
| 51 |
+
|
| 52 |
+
const int64_t i03 = blockIdx.z;
|
| 53 |
+
const int64_t i02 = blockIdx.y;
|
| 54 |
+
const int64_t i01 = blockIdx.x;
|
| 55 |
+
|
| 56 |
+
//TODO: noncontigous inputs/outputs
|
| 57 |
+
const int rowx = blockIdx.x + blockIdx.y * gridDim.x + blockIdx.z * gridDim.x * gridDim.y;
|
| 58 |
+
|
| 59 |
+
const int64_t i11 = i01;
|
| 60 |
+
const int64_t i12 = i02 % p.ne12;
|
| 61 |
+
const int64_t i13 = i03 % p.ne13;
|
| 62 |
|
| 63 |
x += int64_t(rowx)*ncols;
|
| 64 |
+
mask += (i11*p.nb11 + i12*p.nb12 + i13*p.nb13) / sizeof(T) * (mask != nullptr);
|
| 65 |
dst += int64_t(rowx)*ncols;
|
| 66 |
|
| 67 |
const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
|
|
|
|
| 69 |
const int warp_id = threadIdx.x / WARP_SIZE;
|
| 70 |
const int lane_id = threadIdx.x % WARP_SIZE;
|
| 71 |
|
| 72 |
+
const float slope = get_alibi_slope(p.max_bias, i02, p.n_head_log2, p.m0, p.m1);
|
| 73 |
|
| 74 |
extern __shared__ float data_soft_max_f32[];
|
| 75 |
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
|
|
|
|
| 86 |
break;
|
| 87 |
}
|
| 88 |
|
| 89 |
+
const float val = x[col]*p.scale + (mask ? slope*t2f32(mask[col]) : 0.0f);
|
| 90 |
|
| 91 |
vals[col] = val;
|
| 92 |
max_val = max(max_val, val);
|
|
|
|
| 182 |
}
|
| 183 |
|
| 184 |
template<typename T>
|
| 185 |
+
static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, const soft_max_params & params, cudaStream_t stream) {
|
| 186 |
int nth = WARP_SIZE;
|
| 187 |
+
const int64_t ncols_x = params.ncols;
|
| 188 |
+
|
| 189 |
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
|
| 190 |
const dim3 block_dims(nth, 1, 1);
|
| 191 |
+
const dim3 block_nums(params.ne01, params.ne02, params.ne03);
|
| 192 |
const size_t nbytes_shared = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
|
| 193 |
static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
|
| 194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
// FIXME: this limit could be raised by ~2-4x on Ampere or newer
|
| 197 |
if (nbytes_shared < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
|
| 198 |
switch (ncols_x) {
|
| 199 |
case 32:
|
| 200 |
soft_max_f32<true, 32, 32><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 201 |
+
(x, mask, dst, params);
|
| 202 |
break;
|
| 203 |
case 64:
|
| 204 |
soft_max_f32<true, 64, 64><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 205 |
+
(x, mask, dst, params);
|
| 206 |
break;
|
| 207 |
case 128:
|
| 208 |
soft_max_f32<true, 128, 128><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 209 |
+
(x, mask, dst, params);
|
| 210 |
break;
|
| 211 |
case 256:
|
| 212 |
soft_max_f32<true, 256, 256><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 213 |
+
(x, mask, dst, params);
|
| 214 |
break;
|
| 215 |
case 512:
|
| 216 |
soft_max_f32<true, 512, 512><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 217 |
+
(x, mask, dst, params);
|
| 218 |
break;
|
| 219 |
case 1024:
|
| 220 |
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 221 |
+
(x, mask, dst, params);
|
| 222 |
break;
|
| 223 |
case 2048:
|
| 224 |
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 225 |
+
(x, mask, dst, params);
|
| 226 |
break;
|
| 227 |
case 4096:
|
| 228 |
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 229 |
+
(x, mask, dst, params);
|
| 230 |
break;
|
| 231 |
default:
|
| 232 |
soft_max_f32<true, 0, 0><<<block_nums, block_dims, nbytes_shared, stream>>>
|
| 233 |
+
(x, mask, dst, params);
|
| 234 |
break;
|
| 235 |
}
|
| 236 |
} else {
|
| 237 |
const size_t nbytes_shared_low = WARP_SIZE*sizeof(float);
|
| 238 |
+
soft_max_f32<false, 0, 0><<<block_nums, block_dims, nbytes_shared_low, stream>>>(x, mask, dst, params);
|
| 239 |
}
|
| 240 |
}
|
| 241 |
|
|
|
|
| 263 |
|
| 264 |
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
|
| 265 |
|
|
|
|
| 266 |
const int64_t nrows_x = ggml_nrows(src0);
|
| 267 |
const int64_t nrows_y = src0->ne[1];
|
| 268 |
|
| 269 |
+
const int64_t ne00 = src0->ne[0];
|
| 270 |
+
|
| 271 |
float scale = 1.0f;
|
| 272 |
float max_bias = 0.0f;
|
| 273 |
|
|
|
|
| 276 |
|
| 277 |
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
|
| 278 |
|
| 279 |
+
const int64_t nb11 = src1 ? src1->nb[1] : 1;
|
| 280 |
+
const int64_t nb12 = src1 ? src1->nb[2] : 1;
|
| 281 |
+
const int64_t nb13 = src1 ? src1->nb[3] : 1;
|
| 282 |
+
|
| 283 |
+
const int64_t ne12 = src1 ? src1->ne[2] : 1;
|
| 284 |
+
const int64_t ne13 = src1 ? src1->ne[3] : 1;
|
| 285 |
+
|
| 286 |
+
const uint32_t n_head = src0->ne[2];
|
| 287 |
+
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
| 288 |
+
|
| 289 |
+
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
| 290 |
+
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
soft_max_params params = {};
|
| 294 |
+
params.nheads = src0->ne[2];
|
| 295 |
+
params.n_head_log2 = n_head_log2;
|
| 296 |
+
params.ncols = ne00;
|
| 297 |
+
params.nrows_x = nrows_x;
|
| 298 |
+
params.nrows_y = nrows_y;
|
| 299 |
+
params.ne00 = src0->ne[0];
|
| 300 |
+
params.ne01 = src0->ne[1];
|
| 301 |
+
params.ne02 = src0->ne[2];
|
| 302 |
+
params.ne03 = src0->ne[3];
|
| 303 |
+
params.nb11 = nb11;
|
| 304 |
+
params.nb12 = nb12;
|
| 305 |
+
params.nb13 = nb13;
|
| 306 |
+
params.ne12 = ne12;
|
| 307 |
+
params.ne13 = ne13;
|
| 308 |
+
params.scale = scale;
|
| 309 |
+
params.max_bias = max_bias;
|
| 310 |
+
params.m0 = m0;
|
| 311 |
+
params.m1 = m1;
|
| 312 |
+
|
| 313 |
if (use_f16) {
|
| 314 |
+
soft_max_f32_cuda(src0_d, (const half *) src1_d, dst_d, params, stream);
|
| 315 |
} else {
|
| 316 |
+
soft_max_f32_cuda(src0_d, (const float *) src1_d, dst_d, params, stream);
|
| 317 |
}
|
| 318 |
}
|
| 319 |
|